
TTK4550
Specialization Project

Robot Manipulator Collision Handling in Unknown
Environment without using External Sensors

Michael Remo Palmén Ragazzon

December 21, 2012

The Department of Engineering Cybernetics
Norwegian University of Science and Technology

Supervisor
Prof. Jan Tommy Gravdahl

Advisor
PhD Cand. Serge Gale

Abstract

A robot navigating in an unknown environment may collide into objects that have not
been detected. We propose a scheme to detect collisions with such objects and navigate
around them, so the robot can still reach its destination. In this project, a 6-degree-of-
freedom (dof) robot manipulator has been considered. External sensors are assumed to
be unavailable to keep costs at a minimum, although the proposed scheme could possibly
be implemented as a supplement to other sensory information such as from a camera or
tactile sensors.

For simulation purposes, the dynamics of a 6-dof manipulator is developed and an inverse
dynamics controller is used to track a desired trajectory. An original method for collision
detection based on the closed-loop dynamics of the controller is proposed. When a collision
is detected, a signal will be sent to the collision avoidance system based on a Hopfield
neural network, which is used to generate a new trajectory around all detected objects.
This process is repeated until the destination is reached. The proposed solution has been
tested in a simulation experiment.

i

Preface

At the start of this semester, the intended task was to do something within the topic of
robot learning, such as artificial neural networks, reinforcement learning, and/or evolution-
ary robotics. The first part of the task was mainly a guided self-study on this very broad
field. I had little prior knowledge within this topic, but it definitely sparked my interests
having read science fiction and the proposed dystopian future resulting from research in
such topics. As time went on, the focus shifted to robot manipulators, and specifically the
Universal Robots UR5 available to us. We wanted a system which could react somewhat
intelligently to the environment around it.

We were inspired to make a system which could detect and react to unforeseen collisions.
Such a system would consist of several different components such as collision detection,
collision avoidance, and robot dynamics. We didn’t find a great deal of these subproblems
that could employ concepts within robot learning, so the focus shifted a little away from
this topic.

It was our intention to test the scheme on the UR5 manipulator, but sometimes time just
doesn’t cut it. Instead, a simulation experiment was done to show how well the different
components and the overall system performed.

I would like to thank my supervisor Tommy Gravdahl and my advisor Serge Gale for their
support. Tommy for giving me lots of advice along the way in our regular meetings, and
Serge for giving me a great introduction to a field I had little knowledge about.

iii

Contents

Abstract i

Preface iii

Nomenclature xi

1. Introduction 1
1.1. Related Work . 2
1.2. Notation and Terminology . 2

2. Neural Networks 3
2.1. Neural Networks and Learning . 6
2.2. Hopfield Neural Network Model . 6

3. Dynamics of the UR5 Manipulator 9
3.1. Background Theory . 9

3.1.1. Euler-Lagrange Method . 10
3.1.2. Newton-Euler Method . 11
3.1.3. Comparison of Euler-Lagrange and Newton-Euler Method 13

3.2. UR5 Manipulator Dynamics . 14
3.2.1. Denavit–Hartenberg Parameters . 14
3.2.2. Newton-Euler Method Parameters 15
3.2.3. Equations of Motion using Automated Framework 17

3.3. Simulation of UR5 Model Dynamics . 17
3.3.1. Set-up and Controller . 18
3.3.2. Results . 19
3.3.3. Observations . 19

4. Inverse Dynamics Controller 21

5. Collision Detection 23
5.1. Dynamics and Collision Forces . 24
5.2. Force Estimate from Joint Angle Error . 24
5.3. Collision Detection from Force Estimate . 26

v

Contents Contents

6. Collision Avoidance and Trajectory Generation 27
6.1. Hopfield Neural Network Path Planner . 28

6.1.1. Dynamics . 28
6.1.2. Shortest Feasible Path . 30
6.1.3. Comparison to other Neural Networks 30

6.2. Path Planner Examples . 31
6.2.1. Set-up . 31
6.2.2. Results and Observations . 31

6.3. Trajectory between Waypoints . 31
6.3.1. Waypoints to Workspace . 31
6.3.2. Waypoints to Configuration Space 32
6.3.3. Connecting Waypoints using Smooth Splines 33

7. Simulation Experiment 35
7.1. Set-up . 35
7.2. Results . 37
7.3. Discussion . 41

8. Conclusion 45
8.1. Recommendations for Future Work . 46

A. Definitions and Properties 47
A.1. Geometric Jacobian . 47
A.2. Transformation and Rotation Matrices . 48
A.3. Skew Symmetry . 48

B. UR5 Manipulator Dynamics 51
B.1. Framework (Maple file) . 51
B.2. Dynamics (Matlab file) . 60

C. Simulation Experiment Implementation 67
C.1. Simulink Diagrams . 67
C.2. Matlab Code . 69

C.2.1. UR5 Forward Dynamics (S-function) 69
C.2.2. Trajectory Generator . 70
C.2.3. Hopfield Neural Network Path Planner 72

Bibliography 75

vi

List of Figures

2.1. Neuron model . 4
2.2. The fundamental neural network architectures 5

3.1. Universal Robots UR5 Manipulator . 10
3.2. DH coordinate frame assignment of the UR5 manipulator 15
3.3. Cylinder used as an approximation of the inertia tensor of each link 16
3.4. Simulink block diagram of UR5 manipulator dynamics with damping con-

troller . 18
3.5. Simulation results of UR5 manipulator dynamics with damping controller . 19
3.6. UR5 manipulator pose at the end of the simulation 20

6.1. Path planner run on four different collision maps 32

7.1. Top level signal flow of the implemented Simulink model. 35
7.2. Collision space set-up . 36
7.3. Snapshots from animation as the manipulator moves toward the destination

while exploring the environment . 38
7.4. Generated collision map and new trajectory after every collision 39
7.5. Actual trajectory of manipulator end-effector with final generated collision

map . 39
7.6. Actual external force F and estimated external force F̂ 40
7.7. Magnitude of the actual and estimated external force, and total number of

detected collisions . 40
7.8. Zoomed-in section of the actual and estimated force magnitudes 41
7.9. Joint angle error q̃. 41

C.1. Trajectory generator . 67
C.2. Inverse dynamics controller and force estimator 68
C.3. UR5 model dynamics . 68

vii

List of Tables

3.1. DH-parameters for the UR5 manipulator. 16
3.2. Summary of parameters for the UR5 manipulator (1/2) 17
3.3. Summary of parameters for the UR5 manipulator (2/2) 17

ix

Nomenclature

C(q, q̇) Coriolis and centripetal acceleration matrix

F external force

F̂ estimated external force

J geometric Jacobian

M(q) inertia matrix

g(q) gravity vector

n number of robot’s degrees-of-freedom

q joint angles

qd desired joint angles

q̃ joint angle errors

τ input torques

τK induced torque due to external force

, equal by definition

‖·‖ Euclidean norm

∈ symbol for ”is an element of”

⊂ symbol for ”is a subset of”

DH Denavit–Hartenberg

dof degree-of-freedom

EL Euler-Lagrange method

iff if and only if

NE Newton-Euler method

xi

Chapter 1

Introduction

Robots have traditionally been employed in closed environments separate from human
beings, because they have been heavy, bulky, and dangerous. In recent years, a lot of
development has been made to robots that are safe enough to interact with human beings.
In the future, one might envision service robots co-existing with humans. Such robots will
need to act intelligently on all information available to them to complete a given task.
Just like human beings supplement their vision with other senses like touch and hearing,
intelligent robots will need to do the same. We will propose a system that can help a
robot navigate an unknown environment without requiring any external sensors.

Our work will be based on a 6-degree-of-freedom (dof) robot manipulator. The task will be
to move the end-effector to some destination point in an environment with obstacles. The
system will have to detect when a collision has happened without using external sensors,
to keep costs at a minimum. We will propose a scheme to detect such collisions, register
the collided object in a collision map, and move the manipulator around all detected
objects until the destination is reached. It is envisioned that such a scheme can be used in
combination with other sensory information in order to make the robot able to navigate
more efficiently.

The overall task requires several different components to work together. All of these
components are presented by themselves at first, and finally they are combined into a
simulation experiment. We will start chapter 2 by presenting a basic introduction to
artificial neural networks. Such a network is used in the collision avoidance scheme later
on. In chapter 3 we will develop the dynamics of the Universal Robots UR5 manipulator.
These dynamics will be used for two purposes, (1) for simulation of the UR5 manipulator,
and (2) for use in the controller so the manipulator can be moved as desired. This inverse
dynamics controller is presented in chapter 4. An original method for collision detection,
which exploits the closed-loop dynamics of the controller, is presented in chapter 5. In
chapter 6, a trajectory is generated around all detected objects, which uses a method based
on neural networks. Finally in chapter 7, all components are implemented and combined
in Matlab/Simulink to perform a simulation experiment. Results are presented and the
efficiency of the different components is discussed. Conclusions and suggestions for future
work are given in chapter 8.

1

Chapter 1 Introduction

1.1. Related Work

A lot of research focuses on detecting collisions and safely reacting to it, such as in (De Luca
et al., 2006) and (Haddadin et al., 2008). These papers focus on impact with human beings
and minimizing damage in the post-impact phase. We will assume that the mechanical
design of and forces involved with the manipulator does not damage any being or object
in the environment. Instead of going to a recovery or fault mode, we consider a collision
just as new information for our robot, so it can learn about the environment and continue
the original task of reaching the destination point.

In (Palejiya and Tanner, 2006) a hybrid velocity/force control is used in order to navigate
an unknown environment. A force sensor is assumed available, and their robot will slide
along an obstacle as soon as a collision is detected. No map of the environment is generated,
and their method may end up with a very long travel path in certain environments.

In (Takakura et al., 1989) they provided a method for collision detection without sensors
as well as a method of avoiding the obstacle. Their collision detection required either
measurements of joint acceleration, or numerical differentiation of the joint velocities,
which generates a very noisy signal. Their collision avoidance was very limited in the
sense that it only moved a little to the side when a collision was detected.

We will take a different approach than these papers, by generating a map over the collision
space, and follow the shortest free path in this space. The map will be updated every time
a collision is detected.

1.2. Notation and Terminology

We will denote the number of degrees-of-freedom of a manipulator by n. For the UR5
manipulator n = 6. The following terminology will be used throughout the report:

Configuration space The configuration space defines every possible configuration a ma-
nipulator can take. A configuration specifies the location of every point on the
manipulator. For a rigid manipulator with only revolute joints, a configuration is
specified by the joint angles q, a vector in n-dimensional space.

Workspace The workspace of a manipulator is the physical space any configuration of the
manipulator can reach, represented by 3-dimensional Cartesian coordinates. The
axes and origin are placed equal to the inertial frame of the manipulator.

Collision space The collision space is either located in the workspace or configuration
space, in our case in a 2-dimensional plane of the workspace. All collidable objects
are specified in this space, and collision-free trajectories will be generated here before
they are mapped to the workspace and/or configuration space.

Neuronal space The neuronal space is used in the collision avoidance scheme and consists
of a finite amount neurons evenly distributed in the collision space. The neuronal
space and collision space are sometimes used interchangeably.

2

Chapter 2

Neural Networks

This chapter will serve as an introduction to artificial neural networks. The purpose
is both to provide insight into an important topic of robot learning, and specifically to
provide background theory for a neural network which will be implemented later on. We
introduce the artificial neural network by quoting the definition from (Haykin, 1998):

“A neural network is a massively parallel distributed processor made up
of simple processing units, which has a natural propensity for storing
experiential knowledge and making it available for use. It resembles the
brain in two respects:

1. Knowledge is acquired by the network from its environment
through a learning process

2. Interneuron connection strengths, known as synaptic weights, are
used to store the acquired knowledge ”The neural network is made up of many connected neurons. The model of a neuron usually

consists of three basic elements,

• A set of synapses, which multiplies the input xj by its own weight value

• An adder for summing the values from the synapses

• An activation function which takes the value from the adder and outputs a new
value which is limited to some output range

See Figure 2.1 for an illustration of a neuron model. Many different activation functions
can be used, such as a threshold function

φ(v) =

1 if v ≥ 0
0 if v < 0

3

Chapter 2 Neural Networks

Bias

Activation
function

Output

Synaptic
weights

Input
signals

Figure 2.1: Neuron model. Image based on illustration in (Haykin, 1998).

or a saturated linear function

φ(v) =


1 if v ≥ 1

2

v if 1
2 > v > -1

2

0 if v < -1
2

or a Sigmoid function, characterized by its s-shape. An example of such a Sigmoid function
is

φ(v) = 1
1 + exp (−av)

where a is the slope parameter.

The neurons can be connected in several different ways to produce many different types
of neural networks with different properties. The most fundamental network architectures
are

• Single-layer feedforward networks, where each neuron is connected to every input,
and the outputs from the neurons are the outputs of the network. Additionally, no
neurons are connected to other neurons.

• Multilayer feedforward networks, which have one or more layers of hidden layer of
neurons which are not directly measurable from the output.

• Recurrent networks, which is distinguishable from the feedforward networks in that
it has feedback loops which connects the outputs from the neurons back into the
other neurons.

See Figure 2.2 for an illustration of the network architectures.

4

Neural Networks

Input	layer
of	source
nodes

Output	layer
of	neurons

(a) Single-layer feedforward

Output	layer
of	neurons

Input	layer
of	source
nodes

Layer	of
hidden
neurons

(b) Multilayer feedforward

Unit-delay
operators

(c) Recurrent

Figure 2.2: The fundamental neural network architectures. Images based on illustrations
in (Haykin, 1998).

5

Chapter 2 Neural Networks

2.1. Neural Networks and Learning

Neural networks are very suited for learning, and improving its performance. To define
learning in the context of neural networks, we quote again from (Haykin, 1998):

“Learning is a process by which the free parameters of a neural network
are adapted through a process of stimulation by the environment in
which the network is embedded. The type of learning is determined by
the manner in which the parameter changes take place. ”Many algorithms exist for the purpose of learning. One such method compares the output

of the network to a desired response and updates the weights of the synapses to mini-
mize the error. Another strategy, called Hebbian learning, compares the activity in two
connected neurons and increases the synaptic weight between them if they are activated
simultaneously. If they are activated asynchronously, the connection is weakened. Accord-
ing to (Haykin, 1998), there is evidence for Hebbian learning in the part of the human brain
called the hippocampus which is important for our brain’s ability to learn and memorize.
This discovery provides motivation for use of the strategy in robot learning.

Neural networks can be used for several different learning tasks, including

• Pattern association, where a certain memorized pattern yk is associated with a key
pattern xk. There are two phases involved. Firstly, the storage phase which trains
the network to store some patterns yk. Secondly, in the recall phase, a noisy or
distorted version of the key pattern is presented to the network and used to retrieve
the associated yk.

• Pattern recognition, where a received pattern xk is prescribed to one of a number of
classes.

• Function approximation, where we are interested in approximating the non-linear
function f(x).

2.2. Hopfield Neural Network Model

So far, a very general introduction to neural networks has been given, mostly to give an
overview of the topic of neural networks. In chapter 6, a type of neural network called the
Hopfield network is implemented. Specifically, it is used to generate a collision-free path
for the robot manipulator.

The Hopfield network is a form of a recurrent network, and looks exactly like in Figure 2.2 (c).
Here we can see a network with N = 4 neurons where every neuron is fed back into every
other neuron through a unit-delay. The network is set-up by assigning weight values to the
synapses and initial conditions on the output of each neuron. The outputs of the neurons
define the system’s state. By iterating the system through time, the state will converge to
some stable point in the sense of Lyapunov.

6

2.2 Hopfield Neural Network Model

The Lyapunov function of the Hopfield network can have many minima, so the network
will have multiple locally stable states. Now, consider the case where we assign these
minima exactly where we want them such that the stable states represent patterns to be
memorized. This can be done by assigning the weight values in a certain way, and is called
the storage or learning phase. After the storage phase, we can now retrieve an unknown
signal. By setting the initial state of the network to this signal, and iterating, the network
will converge to the state of one of the stored memories. Thus, even if the signal is noisy
or distorted, it will still be able to retrieve the correct memory.

The application we just described is called content-addressable memory, a form of pattern
association. A potential usage is in image recognition where each pixel is assigned to one
neuron. The network could store images of certain known objects, and then a picture of an
unidentified object could be applied to the network for the retrieval phase. By iterating,
the system will converge to one of the known objects most similar to the unknown object.

The stability proof of the Hopfield neural network in the sense of Lyapunov will be provided
in chapter 6 where we use it for the collision avoidance scheme.

7

Chapter 3

Dynamics of the UR5 Manipulator

Dynamics is the study of how forces and torques impact the motion of an object. In
mathematical terms, this relationship is presented using the equations of motion. The
goal of this chapter is to develop the complete dynamic model of the 6-dof Universal
Robotics UR5 manipulator (Figure 3.1) in the form

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (3.1)

where q = q(t) ∈ Rn are the joint angles, M(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈
Rn×n is the Coriolis and centripetal acceleration matrix, g(q) ∈ Rn is the gravity vector,
τ ∈ Rn is the vector of input torques, and n is the number of dof. In general, such a model
can be used for at least two different purposes

1. Direct dynamics, where we are interested in the resulting state (q, q̇) of the robot
given known input torques (τ)

2. Inverse dynamics, where we want to find the input torques (τ) to control the robot
to certain states (q, q̇) over time

Direct dynamics must be used for simulation purposes. Inverse dynamics is commonly
used in controllers, such as the inverse dynamics controller which will be investigated
further in chapter 4. We will do simulations, as well as make a controller based on inverse
dynamics, so both of these purposes will be employed.

3.1. Background Theory

There are several methods to develop the dynamics of a robot manipulator. The most
common methods are the Euler-Lagrange method and the Newton-Euler method. The
Euler-Lagrange method is based on the mechanical energy of the manipulator, while the
Newton-Euler method uses forces and torques between individual links to develop the
dynamics. This section will briefly present and compare the two methods. The Newton-
Euler method will be used to develop the dynamics of the UR5 manipulator.

9

Chapter 3 Dynamics of the UR5 Manipulator

Figure 3.1: Universal Robots UR5 Manipulator. Image: (Uni)

3.1.1. Euler-Lagrange Method

The Euler-Lagrange method represents some of the earliest work in regards to dynamical
models of robotics manipulators. It is based on the difference between the kinetic energy
K and the potential energy P of the manipulator,

L = K − P (3.2)

called the Lagrangian. Once the Lagrangian is found, the Euler-Lagrange equation

d

dt

δL
δq̇j
− δL
δqj

= τj , j = 1, . . . , n (3.3)

can be used to find the equations of motion (Featherstone and Orin, 2008; Spong et al.,
2006). For the Euler-Lagrange equation to hold, the system must be in a set of generalized
coordinates, which means that the vector q must uniquely determine the configuration of
the manipulator in the workspace. Additionally, the system must be holonomic, such that
“the number of degrees of freedom are equal to the number of coordinates needed to specify
the configuration of the system” (Holmberg and Khatib, 2000).

To develop the dynamics, the potential and kinetic energy must be found. The equations
for doing so will now be presented, and is based on (Spong et al., 2006). First, the potential
energy can be found using

P =
n∑
i=1

mig
T rci (3.4)

where mi is the mass of link i, g is the gravity vector in the inertial frame, and rci is the
coordinates of the center of mass of link i.

The kinetic energy can be written in the form K = 1
2 q̇
TM(q)q̇. The inertia matrix M(q)

10

3.1 Background Theory

is found using

M(q) =
n∑
i=1

[
miJ

T
vci
Jvci + JTωi

RiIiR
T
i Jωi

]
(3.5)

where Jvci = Jvci(q) and Jωi = Jωi(q) are the Jacobian matrices to the center of mass
of link i, Ri = Ri(q) are the rotation matrices from the inertial frame to frame i, and
Ii is the inertia tensor of frame i. The Jacobians relate angular and linear velocities in
the workspace to the joint velocities of the manipulator. See appendix A.1 for a proper
definition of the Jacobian.

Let us define the Christoffel symbols,

cijk ,
1
2

[
δMkj

δqi
+ δMki

δqj
+ δMij

δqk

]
(3.6)

where Mij is the (i, j)th element of M(q). The C(q, q̇)-matrix can now be found using

ckj =
n∑
i=1

cijk(q)q̇i (3.7)

where ckj is the (k, j)th element of C(q, q̇). Using these symbols, the matrix Ṁ(q)−2C(q, q̇)
can be shown to be skew symmetric as defined in appendix A.3. This property is necessary
in several controller designs, and in fact will have consequences for the collision detection
in chapter 5.

Finally, the gravity vector g(q) is found using

g(q) =
(
δP

δq

)T
(3.8)

The matrices M(q), C(q, q̇) and the vector g(q) can now be inserted into (3.1) to form the
equations of motion for the robot manipulator.

3.1.2. Newton-Euler Method

The recursive Newton-Euler method is developed in (Spong et al., 2006) for manipulators
with revolute joints. Only the results are presented here for brevity. Note that (Spong
et al., 2006) contains several misleading notations and errors, for which (Høifødt, 2011)
provides a comprehensive errata. All equations presented here have been corrected using
the errata.

While the Euler-Lagrange method treats the entire manipulator as one system, the recur-
sive Newton-Euler method treats each link separately. Using Newtonian mechanics, forces
and torques are calculated on each link.

The dynamics of a manipulator using the Newton-Euler method is developed in two parts.
The first part treats velocities and accelerations by making the same set of calculations
for each link starting at the first. This is called the forward recursion. The second part

11

Chapter 3 Dynamics of the UR5 Manipulator

starts at the last link and treats forces and torques and how these propagate to the first
link. This second part is called the backward recursion.

Notation and Definitions

Following is a list of vectors and matrices used in the equations for the Newton-Euler
method. All of the vectors are expressed in frame i.

Velocity and acceleration

ac,i acceleration of the center of mass of link i

ae,i acceleration of the end of link i (i.e. at the origin of link i+ 1)

ωi angular velocity of frame i w.r.t. frame 0

αi angular acceleration of frame i w.r.t. frame 0

Forces and torques

gi acceleration due to gravity

fi force exerted by link i− 1 on link i

τi torque exerted by link i− 1 on link i

Rii+1 rotation matrix from frame i+ 1 to frame i, Ri+1
i =

(
Rii+1

)T
Physical features of the manipulator (constant for a given manipulator)

mi mass of link i

Ii inertia tensor about the center of mass of link i oriented with frame i

ri−1,ci vector from the origin of frame i− 1 to the center of mass of link i

ri,ci vector from the origin of frame i to the center of mass of link i

ri−1,i vector from the origin of frame i− 1 to the origin of frame i

Forward Recursion

Start with the initial conditions

ω0 = 0, α0 = 0, ac,0 = 0, ae,0 = 0

12

3.1 Background Theory

and solve the following equations in order of appearance

ωi = Rii−1ωi−1 + biq̇i (3.9)
αi = Rii−1αi−1 + biq̈i + ωi × biq̇i (3.10)
ae,i = Rii−1ae,i−1 + ω̇i × ri−1,i + ωi × (ωi × ri−1,i) (3.11)
ac,i = Rii−1ae,i−1 + ω̇ × ri−1,ci + ωi × (ωi × ri−1,ci) (3.12)
gi = Rii−1gi−1 (3.13)

for i = 1 to n.

Backward Recursion

Start with the terminal conditions

fn+1 = 0, τn+1 = 0

and solve the following equations

fi = Rii+1fi+1 +miac,i −migi (3.14)
τi = Rii+1τi+1 − fi × ri−1,ci +

(
Rii+1fi+1

)
× ri,ci + Iiαi + ωi × (Iiωi) (3.15)

for i = n to 1.

These equations can be used directly for inverse dynamics in which q, q̇, and q̈ is provided
and the corresponding τ is found. However, for simulation purposes, the equations needs to
be in a form suitable for forward dynamics, such as (3.1). To find the elements of M(q),
C(q, q̇), and g(q), first the forward and backward recursion is done symbolically using
automated software. Then the equations can be collected and combined to the desired
matrices (Egeland and Gravdahl, 2002, sec. 7.10). For the UR5 manipulator, this is done
using the automated framework of (Høifødt, 2011) which is described in section 3.2.3.

3.1.3. Comparison of Euler-Lagrange and Newton-Euler Method

The Euler-Lagrange method (EL) and the Newton-Euler method (NE) are both based
on fundamental physical laws, i.e. conservation of energy and Newton’s laws of motion
respectively. EL makes a few requirements to the system, such that the system is holo-
nomic, and in a set of generalized coordinates. As long as these requirements are met, the
dynamics using either EL or NE will provide equal response. However, the equations of
motion themselves are usually more complicated computationally when developed using
EL.

Some of the earliest results in robotics used EL to develop the dynamics. The major draw-
back to this method was the high computational cost which limited the use of real-time
inverse dynamics on manipulators. It was shown by (Hollerbach, 1980) that the method
has a O

(
n4) computational cost, in terms of multiplications and additions, while NE has

13

Chapter 3 Dynamics of the UR5 Manipulator

a computational cost of O (n). The same paper presents a modification to the traditional
Euler-Lagrange method using a recursive structure like the Newton-Euler method, and
showed that such a method could also gain a computational cost of O (n). Two years
later, (Silver, 1982) provides more insight into the source of the computational differences,
which was shown to be due to the recursive structure of NE and the choice of rotational
dynamics. Using optimal choices of both methods, it was shown that in fact there is no
fundamental difference between the computational cost of EL and NE.

It should be noted that forward dynamics is in general more computationally expensive
than inverse dynamics, since this requires the inversion of the M(q)-matrix in (3.1) such
that the dynamics is in a form suitable for numerical integration of q̈ (Egeland and Grav-
dahl, 2002, sec. 7.10).

A notable difference between EL and NE, is the skew symmetry property of Ṁ(q)−2C(q, q̇)
which is easily gained in EL by using the Christoffel symbols to find C(q, q̇). This skew
symmetry property is not true for the dynamics of NE. We will see that this prevents us
from using certain methods for the collision detection in chapter 5. This property is also
important for several controller designs in manipulators.

3.2. UR5 Manipulator Dynamics

A Universal Robots UR5 manipulator has been used in this project. It is a 6-dof manip-
ulator as pictured in Figure 3.1. The dynamics of the UR5 manipulator is found using
the Newton-Euler method as this method is simple even for large n with its recursive
structure. This makes it very suited for automated frameworks. Additionally, the low
computational cost is gained automatically, whereas for the Euler-Lagrange method a low
computational cost requires more effort.

In order to proceed with the development of the dynamics, reference frames and parameters
must be defined for each link of the manipulator. First, the standard DH-parameters of
the manipulator will be developed, then the necessary vectors and parameters used in the
Newton-Euler method is defined.

3.2.1. Denavit–Hartenberg Parameters

The commonly used DH-convention defines four parameters that describe how the refer-
ence frame of each link is attached to the robot manipulator. Starting with the inertial
reference frame, one additional reference frame is assigned for every link of the manipula-
tor. The four parameters θi, zi, ai, αi defined for each link i ∈ [1, n] transforms reference
frame i− 1 to i using the four basic transformations

Ai = Rotz,θi
Transz,di

Transx,aiRotx,αi

where the matrices Rot·,· describes rotation and the matrices Trans·,· describes trans-
lation, all of which are properly defined in appendix A.2. Further details of assigning
DH-parameters are found in (Spong et al., 2006).

14

3.2 UR5 Manipulator Dynamics

Figure 3.2: DH coordinate frame assignment of the UR5 manipulator. Link dimensions
are not to scale.

The coordinate systems have been placed along the manipulator as illustrated in Figure 3.2.
The DH-parameters for the manipulator is given in Table 3.1.

3.2.2. Newton-Euler Method Parameters

While the DH-parameters are used when developing the Euler-Lagrange equations of mo-
tion, the Newton-Euler method uses a slightly different set of parameters as shown in
section 3.1.2. The constant vectors and matrices used in the model will be defined in this
section.

The same coordinate frames as developed by the DH-convention will be used. The vectors
ri−1,i which define the translation between coordinate frames can be found by studying
Figure 3.2. Remember that each of the ri−1,i vectors are located in body frame i. The
values are then found as

r01 = [0 d1 0]
r12 = [-a2 0 0]
r23 = [-a3 0 0]
r34 = [0 d4 0]
r45 = [0 -d5 0]
r56 = [0 0 d6]

15

Chapter 3 Dynamics of the UR5 Manipulator

Table 3.1: DH-parameters for the UR5 manipulator.

Link θi di ai αi

1 θ∗1 d1 0 π
2

2 θ∗2 0 -a2 0
3 θ∗3 0 -a3 0
4 θ∗4 d4 0 π

2

5 θ∗5 d5 0 -π2
6 θ∗6 d6 0 0

∗ joint variable

The rotation matrices between each frame is given by

Rii−1 = Rz,θi
Rx,αi

where θi are the joint variables and αi are configuration independent parameters given
by the DH-parameters in Table 3.1. The rotation matrices Rx,α and Rz,θ are given in
sectionA.2.

The DH-parameters, the link masses, and the center of mass vectors were provided by the
manipulator manufacturer. The inertia tensors, were approximated for each link using a
cylindrical inertia tensor

Icyl,x =


1
2mr

2 0 0

0 1
12m

(
3r2 + h2) 0

0 0 1
12m

(
3r2 + h2)


where m is the link mass, r is the radius of the cylinder, and h is the height of the cylinder
along the x-axis as seen in Figure 3.3. Equivalent inertia tensors can be found along the
y- and z-axes, denoted Icyl,y and Icyl,z. The inertia tensors are defined along different
axes for each link, to fit the physical manipulator as much as possible. The height and
radius values for each link, hi and ri, were approximated from technical drawings of the
manipulator. The values used for the UR5 manipulator is summarized in Table 3.2 and
Table 3.3.

Figure 3.3: Cylinder used as an approximation of the inertia tensor of each link

16

3.3 Simulation of UR5 Model Dynamics

Table 3.2: Summary of parameters for the UR5 manipulator (1/2)

Link i
di ai mi ri hi

Ii
[m] [m] [kg] [m] [m]

1 0.0892 0 3.8054 0.045 0.13693 Icyl,y

2 0 -0.425 8.4576 0.045 0.540 Icyl,x

3 0 -0.39243 2.1456 0.0386 0.507 Icyl,x

4 0.109 0 1.1884 0.0386 0.085 Icyl,y

5 0.093 0 1.11884 0.03862 0.085 Icyl,y

6 0.082 0 0.1632 0.0386 0.0395 Icyl,z

Table 3.3: Summary of parameters for the UR5 manipulator (2/2)

Link i ri−1,i [m] ri,ci [m]

1 [0 0.0892 0] [0 -0.01541 0.00151]
2 [-0.425 0 0] [0.2125 0 0.1134]
3 [-0.39243 0 0] [0.150 -0.00015 0.0154]
4 [0 0.1090 0] [0 0.0015 0.0154]
5 [0 -0.093 0] [0 0 -0.0128]
6 [0 0 0.082] [0 0 0]

3.2.3. Equations of Motion using Automated Framework

An automated framework for running the backward and forward recursion equations from
section 3.1.2 is given by (Høifødt, 2011). The framework is written in Maple and gives the
equations of motion symbolically. The Maple file is shown in appendix B.1.

By running the Maple file, the matrices M(q), C(q, q̇)q̇, and g(q) from (3.1) are found.
The produced matrices for the UR5 manipulator can be found in appendix B.2. This
concludes the development of the dynamics of the UR5 manipulator.

3.3. Simulation of UR5 Model Dynamics

A simulation was run in order to verify that the model developed for the UR5 manipulator
in the previous sections works as expected.

17

Chapter 3 Dynamics of the UR5 Manipulator

3.3.1. Set-up and Controller

The model dynamics were simulated by setting the initial state of the manipulator to zero,
such that

q(0) = 0
q̇(0) = 0

This means that the pose of the manipulator is equal to the pose in Figure 3.2, and if the
model is correct, it is expected that the manipulator will start by falling down in some of
the joints due to gravity.

A feedback signal from the q̇ vector was used to damp the system so that it will end at a
stable rest position. The controller can be described as

τ = −Kq̇

where K = K(t) is a scalar defined such that

K(t) ,

1− 0.1t for t ≤ 9.8
0.02 for t > 9.8

This function is defined as such to give large damping while to system initially falls from
the zero-position. This avoids some of the overshoot. As the system comes closer to rest,
such large damping is not needed and the gain is reduced to make the system come to rest
at a faster rate. The purpose of the variable damping is for the system to come to rest at
a faster rate, and thus reduce the simulation time.

The model and controller was run using Simulink, and the block diagram is shown in
Figure 3.4. The equations of motion for the UR5 manipulator were set-up in a Matlab
S-function, which was based on the work of (Høifødt, 2011). The S-function takes q, q̇, and
τ as input parameters and outputs new q̇ and q̈ which is then run through an integrator
block. It essentially solves (3.1) for q̈, i.e. the forward dynamics problem.

Figure 3.4: Simulink block diagram of UR5 manipulator dynamics with damping con-
troller

18

3.3 Simulation of UR5 Model Dynamics

3.3.2. Results

The results of the simulation are plotted in Figure 3.5. The plot shows the evolution of q
and q̇ over time. An illustration of the manipulator’s pose at the end of the simulation is
shown in Figure 3.6.

0 5 10 15
−1

0

1

2

3

Time [s]

R
ad

ia
ns

Response of q

q

1

q
2

q
3

q
4

q
5

q
6

0 5 10 15
−10

−5

0

5

10

Time [s]

R
ad

ia
ns

/s
ec

on
d

Response of Dq

Dq

1

Dq
2

Dq
3

Dq
4

Dq
5

Dq
6

Figure 3.5: Simulation results of UR5 manipulator dynamics with damping controller

3.3.3. Observations

The simulation results shows that the system initially starts to fall due to gravity. The
damping controller reduces q̇ until the system comes to rest at around 11 seconds. The
stationary end values of q define the rest pose of the manipulator. As one can see, q2
ends at a stationary value of about π/2 [rad] = 90◦. By comparing this result to the
manipulator sketch in Figure 3.2, one can see that the second link falls almost straight
down as expected. The fifth joint, q5, ends at 90◦ which means that the end-effector is
rotated such that it is pointing downward. This makes both joint 3 and 4 end up with an
offset of -26.6◦ and -27.2◦ respectively to compensate for the weight of the end-effector.

Another interesting observation is that q1 initially moves back and forth mainly as the
second link falls down, overshoots, and falls back down again. So by swinging the second
arm, one can expect the first joint to have a reverse motion, which behaves as one would
expect by looking at Figure 3.2.

19

Chapter 3 Dynamics of the UR5 Manipulator

Figure 3.6: UR5 manipulator pose at the end of the simulation. Link dimensions are not
to scale, joint angles are approximate.

20

Chapter 4

Inverse Dynamics Controller

In the previous chapter, the dynamics of the UR5 manipulator was developed. In order
to control the manipulator to a desired trajectory, a controller is needed. In this chapter
a controller based on inverse dynamics will be presented. This controller takes a smooth
desired trajectory and returns the motor torque to follow it.

Consider the controller
τ = M(q)aq + C(q, q̇)q̇ + g(q) (4.1)

where aq is to be determined. By applying this controller to the dynamics equation (3.1)
we get

M(q)q̈ + C(q, q̇)q̇ + g(q) = M(q)aq + C(q, q̇)q̇ + g(q)
M(q)q̈ = M(q)aq (4.2)

Since M(q) is positive definite (Spong et al., 2006), it is invertible. Left-multiplying by
it’s inverse leads to

q̈ = aq (4.3)

This is known as a double-integrator system, which essentially let us control the joint
acceleration independently of each other. Let us set

aq = q̈d −K0q̃ −K1 ˙̃q (4.4)

where q̃ = q− qd, ˙̃q = q̇− q̇d, and K0, K1 are diagonal matrices consisting of position and
velocity gains respectively. Note that aq is just an acceleration feedforward with a PD
feedback control.

To decide the gain matrices K0, K1, consider (4.4) inserted into (4.3) and rearranged,
which leads to the closed-loop dynamics

¨̃q(t) +K1 ˙̃q(t) +K0q̃(t) = 0 (4.5)

21

Chapter 4 Inverse Dynamics Controller

By choosing the gain matrices as

K0 =



ω2
1 0 . . . 0

0 ω2
2 . . . 0

...
...

0 0 . . . ω2
n


, K1 =



2ω1 0 . . . 0

0 2ω2 . . . 0
...

...

0 0 . . . 2ωn


(4.6)

we have a decoupled closed-loop system where every joint response is a critically damped
linear second-order system with natural frequency ωi. The vector of natural frequencies
is denoted by ω = [ω1 ω2 . . . ωn]T .

Now that the gain matrices have been defined, we can find aq by providing a reference
trajectory (qd(t), q̇d(t), q̈d(t)) to (4.4). And by using the dynamics of the manipulator as
found in the previous chapter, we can now find the input torque τ using (4.1).

22

Chapter 5

Collision Detection

In this chapter, a method will be developed for detecting that our robot manipulator has
collided into an object. By sensing the collision, appropriate response can then be taken.
This can provide additional safety in the case where the manipulator hits an object that
is not known to the robot. In our case, the goal of the manipulator is to reach a certain
destination despite there being objects in the way. The collision point will be saved and
then a signal will be provided to the collision avoidance method shown in the next chapter.
This signal indicates that an object is in the way, and a new trajectory will be generated
around the collision point.

When a collision occurs on the manipulator, forces are introduced at the contact point.
Thus, detecting a collision is comparable to detecting contact forces. Several methods
exist to detect such contact forces. The most obvious is to use force sensors. The down-
side to using force sensors is the added cost to the system. Additionally, only collisions
occurring on the sensor itself will be detectable. Torque sensors placed on every joint may
be used to estimate externally applied force. Such an approach will be able to detect a
force applied at any link, although still introduces additional cost.

Several methods exist without using sensors. Such an approach is taken in (De Luca
et al., 2006) which uses the generalized momenta, M(q)q̇, and takes advantage of known
dynamics of the manipulator to estimates the force. This method is shown to approach
the externally applied forces exponentially fast. The link in which the collision occurs
can be detected. Additionally, the direction of the force as well as the torque from the
externally produced force can be found.

Such an approach was considered in our work. We know the dynamics of the UR5 ma-
nipulator, but the downside to the method in (De Luca et al., 2006) is that it requires
the C(q, q̇)-matrix in (3.1) to have the property such that Ṁ(q) − 2C(q, q̇) is skew sym-
metric. Such a result is easily obtainable using the Euler-Lagrange method to develop the
dynamics by using e.g. the Christoffel symbols (Spong et al., 2006). But as discussed in
section 3.1 this property does not hold in general using the Newton-Euler method. Thus,
we had to abandon this method.

Several papers use a disturbance observer by comparing the estimated torque to the com-
manded torque, such as in (Takakura et al., 1989; Suita et al., 1995). These methods

23

Chapter 5 Collision Detection

require either numerical differentiation of joint velocities or a sensor for measuring joint
acceleration. Numerical differentiation results in a noisy signal. Furthermore, it is difficult
to tune the thresholds in such schemes.

In (Stolt et al., 2012) a method using no sensors or knowledge of the dynamics is presented.
It uses only the error between the desired and actual joint angle. An assumption is made
that this error is proportional to the joint torques. We will show that this estimate can be
improved if an inverse dynamics controller, such as the one presented in chapter 4, is used.
The force estimate is based on the closed-loop dynamics of the system and controller. Our
method will be implemented in simulations, and the efficiency of the force estimate will
be discussed from the results in chapter 7.

5.1. Dynamics and Collision Forces

When an external force is applied on the robot manipulator, the robot dynamics (3.1)
becomes augmented with an additional term,

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τK (5.1)

where τK is the induced torque in the manipulator’s joints due to external force. The
relationship between torque and end-effector force is given by (Spong et al., 2006, sec.
4.10)

τK = JTF

where J = J(q) is the Jacobian as defined in appendix A.1, and F = [Fx, Fy, Fz, nx, ny, nz]T

represents the vector of external forces and moments acting at the end-effector. For a six-
dof manipulator, such as the UR5, the force can be found from

F =
(
JT
)−1

τK (5.2)

as long as J is not singular.

5.2. Force Estimate from Joint Angle Error

In (Stolt et al., 2012) the error between the measured joint position q and desired joint
position qd is assumed to be proportional to the joint torque. Little mathematical justi-
fication is made for this claim, but an experiment was able to provide a decent estimate
of the force. Our investigation will show that this method can be improved if an inverse
dynamics controller such as presented in chapter 4 is used by the manipulator and the
inertia matrix M(q) is known.

Consider the inverse dynamics controller (4.1) applied to the dynamics (5.1)

M(q)q̈ + C(q, q̇)q̇ + g(q) = M(q)aq + C(q, q̇)q̇ + g(q) + τK (5.3)

24

5.2 Force Estimate from Joint Angle Error

where aq = q̈d − K0q̃ − K1 ˙̃q as in (4.4). Left-multiplying by the inverse of M(q) and
removing equal terms leads to the dynamics

q̈ = aq +M(q)−1τK (5.4)

Since M(q) is positive definite, it is always invertible. Inserting for aq results in the
closed-loop dynamics

¨̃q +K1 ˙̃q +K0q̃ = M(q)−1τK

= r (5.5)

where r is defined such that
r ,M(q)−1τK (5.6)

Note that r acts like a force on the mass-spring-damper system q̃. In (Hacksel and Sal-
cudean, 1994) a velocity observer leads to similar dynamics as in (5.5), and they propose
to estimate the right-hand side such that

r̂ = K0q̃ (5.7)

where r̂ is the estimate of r. If r is slowly varying compared to the dynamics of q̃, this
should give a good estimate. The dynamics of q̃ is dependent on the chosen K0 and K1
matrices, and in theory they could be chosen such that the system is very quick (stiff).
But in practice, the system will be limited by motor torque saturation, reaction time, and
possibly other disturbances.

By using (5.2), (5.7), and the torque estimate τ̂K = M(q)r̂, the estimated force F̂ can now
be found

F̂ =
(
JT
)−1

τ̂K

=
(
JT
)−1

M(q)K0q̃ (5.8)

This force estimate is implemented in our simulations. Whether the assumption that r
is slowly varying gives a good estimate will be discussed after presenting the simulation
results in chapter 7.

Similarities exist between this force estimate and the method used in (Stolt et al., 2012).
If we dropped M(q) from (5.8), and exchanged K0 for a new experimentally determined
constant, we would have the same estimator as in (Stolt et al., 2012). By taking advantage
of the closed-loop dynamics of the inverse dynamics controller, we have shown that a
better estimate can be achieved by taking into account the configuration-dependent inertia
matrix.

25

Chapter 5 Collision Detection

5.3. Collision Detection from Force Estimate

An estimate of the external contact force is given by (5.8). A collision is registered when
the magnitude of the force is above some limit, i.e.∥∥∥F̂∥∥∥ > fmin (5.9)

where ‖·‖ is the Euclidean norm, and fmin is a positive constant. As we only make use of
the magnitude of the force, the force estimate does not need to be accurate in all directions,
as long as the magnitude is in the correct range.

In our simulation experiment, the detected collision will be signaled to the collision avoid-
ance system presented in the next chapter.

26

Chapter 6

Collision Avoidance and Trajectory
Generation

The goal of this chapter is to develop a method to dynamically generate a collision-free
trajectory to the manipulator’s destination. This trajectory will be updated whenever
a collision with an object is detected using the method from the previous chapter. The
overall strategy is to

1. Start moving from initial position P0 to destination Pd

2. Whenever a collision occurs, update collision map and create a new trajectory around
all detected objects

Several methods exist for generating collision-free trajectories. The problem can be divided
into two parts. First, waypoints are constructed in workspace around any detected objects
which takes the manipulator from the current position P to Pd. Then the waypoints are
mapped to the configuration space, and a trajectory between each waypoint is generated.
The trajectory in configuration space is interpolated using smooth splines, such that a
complete time-set of qd, q̇d, and q̈d is generated all the way to the destination. This
desired trajectory will be fed to the inverse dynamics controller, which will move the
manipulator toward the target position.

In (Spong et al., 2006), two approaches are presented for generating waypoints. The first
method constructs artificial potential fields and uses a gradient descent algorithm to find
a path. The second is called the probabilistic roadmap method and uses random samples
to find collision-free points, which are then connected to their neighbors. Then a path is
found using the shortest path through all the points.

We will take a different approach to generating the waypoints by using a Hopfield-type
neural network as presented by (Glasius et al., 1995). They propose a method by placing
neurons on an n-dimensional grid, each neuron representing a point in the n-dimensional
space. Each of these is connected to their neighbors, and their state is updated iteratively
by using the states of the neighboring neurons. Using Lyapunov theory, convergence is
proven for the network, and the generated path is shown to be minimal.

27

Chapter 6 Collision Avoidance and Trajectory Generation

Waypoints could be generated directly in configuration space to avoid collision in all
links of the manipulator. But since the configuration space of the UR5 manipulator is
6-dimensional, the neural network quickly becomes very complex. Thus, we will keep
it simple by generating waypoints in workspace. A further simplification is made such
that the end-effector only moves in a two-dimensional plane. This enables us to use a
two-dimensional collision space. It should be noted that these simplifications limits us
to only generate collision-free paths at the end-effector, as opposed to every link on the
manipulator.

6.1. Hopfield Neural Network Path Planner

In chapter 2 an overview of neural networks was presented. A Hopfield network was briefly
discussed, and a type of this network will be presented in full detail here. A proof based
on Lyapunov theory will be presented for stability and convergence of the network. It
will be shown that this network can be used to provide a solution to the shortest-path
problem. The Hopfield model is based on the neural network in (Glasius et al., 1995).

6.1.1. Dynamics

The following proceedings are based on (Glasius et al., 1995) and will present the neural
network and show its stability. Let us denote the workspace of the manipulator byW ⊂ R3.
Within a two-dimensional plane in the workspace, a set of topologically ordered neurons
is evenly distributed. This map will be called the neuronal space N ⊂ R2.

Denote the output of each neuron as σi, i = 1, . . . , N , where N is the total number of
neurons. The total input to each neuron i is

ui(t) =
N∑
j

Tijσj(t) + Ii (6.1)

where the synaptic weight between neuron i and neuron j is represented by Tij , and Ii
is an external sensory input. The destination neuron is clamped to 1 by setting Ii � 1.
Neurons located on obstacles have an external sensory input Ii � -1, such that these
neurons will be clamped to 0. The connections of Tij is defined such that

Tij =

1 if ρ(i, j) < r

0 otherwise
(6.2)

where r is a positive constant, and ρ(i, j) is the Euclidean distance between neuron i and
j in N . The discrete-time update law for the neurons is given by

σi(t+ 1) = g (ui(t)) (6.3)

where g(·) is an activation function such as those presented in chapter 2. Consider the

28

6.1 Hopfield Neural Network Path Planner

Lyapunov function candidate

L(σ) = 1
2
∑
i,j

Tijσiσj −
∑
i

Iiσi +
∑
i

G(σI) (6.4)

with G(σi) =
´ σi

0 g−1(x)dx. The time-step difference of the Lyapunov function candidate
is found to be

∆L = L(σ(t+ 1))− L(σ(t))

∆L = −1
2
∑
i,j

Tij [∆σi∆σj + 2σj(t)∆σi]−
∑
i

Ii∆σi

+
∑
i

[G (σi(t+ 1))−G (σi(t))] (6.5)

where ∆σi = σi(t+ 1)− σi(t). By Taylor’s theorem

G (σi(t+ 1))−G (σi(t)) = G′ (σi(t+ 1)) ∆σi −
1
2G
′′(ξ)(∆σi)2

≤ G′ (σi(t+ 1)) ∆σi −
1
2 (∆σi)2 min

x∈[0,1]
G′′(x) (6.6)

where ξ ∈ [σi(t), σi(t+ 1)]. Inserting (6.6) into (6.5) and using the definition of G(x) we
obtain

∆L ≤ −1
2
∑
i,j

[
Tij + δij

β

]
∆σi∆σj (6.7)

where 1
β = minxG′′(x) is the minimum curvature of the function G(x) in the closed interval

[0, 1]. The Kronecker delta-function δij is given by

δij =

0, if i 6= j

1, if i = j

Consider the matrix T ∈ RN×N made up from the elements Tij . The right-hand side of
(6.7) will be negative if the matrix T +β−1I is positive definite. A sufficient condition for
T + β−1I to be positive definite is given by

β <

∣∣∣∣ 1
λmin

∣∣∣∣ (6.8)

where λmin is the most negative eigenvalue of T . If this condition is satisfied, L is a
Lyapunov function and guarantees that the dynamics converges to a fixed point.

We have shown that the time-discrete dynamics is stable by following the proof of (Glasius
et al., 1995). In their paper, they also provide proof for continuous-time version of the
dynamics which is omitted here.

29

Chapter 6 Collision Avoidance and Trajectory Generation

6.1.2. Shortest Feasible Path

The stability of the neural network was shown in the previous section. In this section
we will first provide conditions for which the equilibrium point is unique. Then it will
be argued that the neural network provides the shortest feasible path using the steepest
ascent in terms of σ from the initial neuron to the destination neuron.

The final equilibrium states are solutions of the fixed point equations

σ∗i = g

 N∑
j

Tijσ
∗
j + Ii

 (6.9)

for i = 1, . . . , N . This final equilibrium point is unique when the Lyapunov function is
strictly convex. If the second-order partial derivatives of L exists then L is strictly convex
iff the Hessian matrix Lij ≡ δ2L

δσiδσj
is positive definite. The Hessian is found to be

Lij = −Tij + δij
1

g′ (g−1(σi))

< −Tij + δij
β

(6.10)

If all eigenvalues of T are negative, then L is strictly convex. If there are some positive
eigenvalues, a sufficient condition is given by

β <
1

λmax
(6.11)

To satisfy (6.8) and (6.11) at the same time, we can choose

β <
1
λ
, λ = max {|λmin|, |λmax|} (6.12)

This choice will then guarantee strict convexity of L, which means that a local minimum of
L is a global one and is unique. Thus, (6.9) will only have one solution. This equilibrium
state depends only on the position of the obstacles and on the position of the target.

In (Glasius et al., 1995) it is argued that the step giving the shortest path toward the
destination from any given neuron, is given by the largest value σi of any neighboring
neuron i. This means that to construct an optimal path, each step from the initial point
must follow the steepest ascent. The destination is reached when no neighboring neurons
are larger than the current.

6.1.3. Comparison to other Neural Networks

The neural network presented here is unique from many other neural networks in several
regards. First of all, no information is stored in the synaptic weights. They are constant
and either one or zero. The only information comes from the external input signals in
terms of destination and obstructions. The neural network here is in fact only used to

30

6.2 Path Planner Examples

calculate the given problem, and not to learn, store information, or retrieve information
as is common in other types of neural networks.

6.2. Path Planner Examples

A few simple examples are simulated to show how well the path planner performs.

6.2.1. Set-up

The Hopfield neural network path planner is implemented in Matlab, and run on several
different collision maps. All collision maps are 2-dimensional, with a grid size of 20× 20,
which results in N = 400 neurons. The radius r in (6.2) is set such that only the four
nearest neighbors of the current neuron is connected. This means that for each step, the
trajectory can only move up/down, or left/right. By solving the eigenvalues of T , we have
λ ≈ 3.0, and using (6.12), we have the condition β < 1

3.0 . We chose β = 0.1. The Matlab
code of our implementation is seen in appendix C.2.3.

6.2.2. Results and Observations

The generated paths are shown in Figure 6.1. The paths generated are indeed optimal,
although only in the sense of the 1-norm between the neurons. This leads to some path
segments with an “L”-shape, and others with a “staircase”-shape. These unwanted shapes
could potentially be smoothed in a post-processing step.

This set-up, with the same number of neurons, will be used for the final simulation in
chapter 7. The path planner will then run each time a collision is detected, and a new
trajectory will be generated.

6.3. Trajectory between Waypoints

The neural network path planner presented in the previous sections provides waypoints
in the neuronal space, but the inverse dynamics controller will need a smooth trajectory
in configuration space. To accomplish this, first, the waypoints need to be mapped to the
workspace of the manipulator. This mapping will depend on the location of the neuronal
space in the workspace. The workspace waypoints are then mapped to configuration space
using inverse kinematics. Lastly, the configuration space waypoints are interpolated using
smooth splines.

6.3.1. Waypoints to Workspace

The neuronal space can be placed at any desired location in the workspace. The mapping
from neuronal space to workspace is thus dependent on the chosen placement. In our

31

Chapter 6 Collision Avoidance and Trajectory Generation

(a) Collision map 1 (b) Collision map 2

(c) Collision map 3 (d) Collision map 4

Figure 6.1: Path planner run on four different collision maps. For each pair, the left
image shows the initial set-up, and the right image shows the path generated from the
path planner. White: Free space, Black: Obstruction, Grey: Generated path, Green:
Initial position, Red: Destination.

case, the 2-dimensional neuronal space is placed along the xy-axes of the workspace with
a mapping such that

xw = 0.0263u+ 0.1238
yw = 0.0263v − 0.2762 (6.13)
zw = 0

where xw, yw, and zw are the three Cartesian coordinates of the workspace, and u, v are
the two integer coordinates of the neuronal space. The first neuron is defined to be located
at (u, v) = (1, 1) and the last one is located at (u, v) = (m,n), where m and n are the
number of neurons along the u-axis and v-axis respectively. Since the neuronal space is
evenly distributed in the collisions space, the same mapping as in (6.13) can be used for
collision space. Moreover, the collision space coordinates can use any real value, not just
integers.

6.3.2. Waypoints to Configuration Space

The workspace waypoints can be mapped to the configuration space using inverse kine-
matics. The topic of inverse kinematics is a very large topic in itself, and will not be
presented in any detail here. In our simulations, the inverse kinematics solution from the
robotics toolbox (Corke, 2011) has been used. The toolbox provides a function which
maps the workspace waypoints to the configuration space.

32

6.3 Trajectory between Waypoints

6.3.3. Connecting Waypoints using Smooth Splines

The inverse dynamics controller needs a smooth trajectory in the configuration space, qd,
q̇d, and q̈d. To connect the configuration space waypoints, we will use smooth splines. A
smooth spline is simply a polynomial, and we will use a polynomial of the form

qd(t) = At5 +Bt4 + Ct3 +Dt2 + Et+ F, t ∈ [t0, t1) (6.14)

with the coefficients found such that qd(t0) = q0, qd(t1) = q1, q̇d(t0) = q̇0, q̇d(t1) = q̇1,
and possibly q̈d(t0) = q̈d(t1) = 0. The first and second time-derivative of (6.14) can be
calculated in order to find q̇d(t) and q̈d(t).

By providing a list of (t0, t1, q0, q1, q̇0, q̇1) between each waypoint, and using (6.14), all
the splines can be connected to form the complete time-set of qd, q̇d, and q̈d until the
destination is reached.

In our simulations, the polynomial in (6.14) is calculated using the robotics toolbox (Corke,
2011). The splines are connected and the resulting qd, q̇d, and q̈d are output to the inverse
dynamics controller.

33

Chapter 7

Simulation Experiment

In the preceding chapters, we have developed all the necessary components needed to
simulate our proposed solution. We have developed the dynamics of the UR5 manipulator,
an inverse dynamics controller, a method for collision detection, and finally a method for
collision avoidance of detected objects. All of these components will be combined and used
in this simulation experiment.

The goal of the simulation experiment is for the manipulator to move from the initial
position P0 to the destination Pd without any knowledge of the environment. When
the manipulator collides into an object, the manipulator will be reversed, and a new
trajectory generated around the detected collision point. This process is repeated until
the destination Pd is reached.

First we will show some of the implementation details and set-up of the simulation, then
results will be presented, and finally the efficiency of the proposed solution will be dis-
cussed.

7.1. Set-up

tau

q

q_dot

UR5 model dynamics

qd

qd_dot

qd_ddot

q

q_dot

tau

F_hat

Inverse dynamics controller
and force estimator

F_hat

qd

qd_dot

qd_ddot

Trajectory generator

Figure 7.1: Top level signal flow of the implemented Simulink model.

The UR5 manipulator dynamics, collision detection, and trajectory generator are all im-
plemented in Simulink. The top level signal flow is shown in Figure 7.1. Each of the
subsystems in this diagram can be seen in Appendix C, along with some of Matlab func-
tions used in the simulation.

35

Chapter 7 Simulation Experiment

The 2-dimensional collision space has been placed in the xy-plane of the workspace as
defined by the mapping (6.13). The start and destination positions, P0 and Pd, are
both located in the collision space, and the trajectory generator will restrict all desired
trajectories to this plane.

The natural frequencies of the inverse dynamics controller used in (4.6) has been set to

ω =
[

22.5 22.5 37.5 60.0 67.5 75.0
]T

The threshold of the collision detection in (5.9) has been set to

fmin = 12

The initial position of the end-effector and destination point in the collision space can be
seen in Figure 7.2 together with the objects the manipulator will collide with.

Figure 7.2: Collision space set-up. Grey area is collidable objects made up of overlapping
cylinders, green circle is initial position, and red circle is destination.

Objects and Collision Force

Several cylinders have been placed in the collision space, which generates contact forces
when the manipulator collides into them. As mentioned in chapter 6, only the end-effector
of the manipulator is considered in the collision model. Let us define a vector v relating
the position of the cylinder to the end-effector in the xy-plane as

v ,


Pcyl(1)− P (1)

Pcyl(2)− P (2)

0


where Pcyl is the position of the cylinder’s center, and P is the end-effector position, both
located in workspace. The parenthesis denotes the element of the vector. Let us denote the

36

7.2 Results

distance between the end-effector and cylinder in the xy-plane as D, given by D = ||v||.
The contact force is then modeled as

Fcontact =

−k (R−D) v
D if D < R

0 else

where R is the cylinder radius and k is a constant set to 105 in our simulation. Essentially,
the contact force increases linearly as the end-effector moves toward the center of the
cylinder, starting with zero at the edge. The cylinder thus has a certain softness to it
controlled by the constant k, the higher the value, the stiffer the material.

The contact force of all the cylinders are summed up and then applied to the end-effector.
We have not implemented any friction force in this simulation.

7.2. Results

The simulation was run in Matlab/Simulink, and several plots and figures are presented
to provide results for each of the components of the proposed solution. The simulation
was run for 50 seconds until the destination point was reached. The movements of the
manipulator is plotted in a 3d-animation using the robotics toolbox (Corke, 2011), and
snapshots of this animation can be seen in Figure 7.3. Each time a collision was detected a
new collision map was generated, and the evolution of this map can be seen in Figure 7.4.
In Figure 7.5 we can see the actual trajectory of the end-effector of the manipulator in
collision space, plotted with the final collision map.

The force estimate for the collision detection scheme is plotted in Figure 7.6 together with
the actual collision force. The magnitude of the estimated and actual force is plotted
in Figure 7.7 with the number of collisions detected. A zoomed-in extract of the force
magnitudes during a collision is shown in Figure 7.8. The joint angle error q̃ is plotted in
Figure 7.9.

37

Chapter 7 Simulation Experiment

(a) t = 0s (b) t = 3s

(c) t = 14s (d) t = 37s

(e) t = 41.5s (f) t = 46s

Figure 7.3: Snapshots from animation as the manipulator moves toward the destination
while exploring the environment. Blue cones represent the manipulator joints, green
cones are collidable objects, and the red cone is the destination. The black grid is
surrounding the collision (neuronal) space. (a) Initial position, (b) first collision, (c)
another collision, (d) moving freely, (e) collision not registered, (f) destination reached.

38

7.2 Results

Initial 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 7.4: Generated collision map and new trajectory after every collision. White: Free
space, Black: Detected obstruction, Light grey: Current position, Dark grey: Generated
path

Figure 7.5: Actual trajectory of manipulator end-effector (orange) in collision space,
superimposed with final generated collision map (blue).

39

Chapter 7 Simulation Experiment

0 5 10 15 20 25 30 35 40 45 50
−15

−10

−5

0

5

10

15

Time [s]

F
or

ce
 [N

]

F

0 5 10 15 20 25 30 35 40 45 50
−15

−10

−5

0

5

10

15

Time [s]

F
or

ce
 [N

]

F
hat

F
x

F
y

F
z

n
x

n
y

n
z

Figure 7.6: Actual external force F and estimated external force F̂ .

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

Time [s]

F
or

ce
 [N

]

||F|| vs ||F
hat

||

||F||
||F

hat
||

Collisions detected

Figure 7.7: Magnitude of the actual and estimated external force, ||F || and ||F̂ ||, plotted
with the total number of detected collisions.

40

7.3 Discussion

2.12 2.14 2.16 2.18 2.2 2.22 2.24 2.26 2.28 2.3 2.32
0

1

2

3

4

5

6

7

8

Time [s]

F
o
rc

e
 [

N
]

||F|| vs ||F
hat

||

||F||

||F
hat

||

Figure 7.8: Zoomed-in section of the actual and estimated force magnitudes, ||F || and
||F̂ ||, showing high-frequency forces during a collision.

0 5 10 15 20 25 30 35 40 45 50

−0.1

−0.05

0

0.05

0.1

Time [s]

q
ti
ld

e
[r

a
d
]

Joint error q
tilde

Figure 7.9: Joint angle error q̃.

7.3. Discussion

The efficiency of the collision avoidance and trajectory generator will be discussed first,
before we continue with the collision detection scheme. Finally, we will reflect on the
effectiveness of the overall system.

Collision Avoidance and Trajectory Generator

The collision map starts out empty so a direct trajectory is generated from P0 to Pd as seen
in Figure 7.4. As the manipulator moves and new collisions are registered, the collision
map fills up as expected until the entire left half is blocked. Finally the manipulator ends
up at the desired position.

As seen in Figure 7.5, the collisions are sometimes registered inside the objects instead
of at the edge. This is because the collision is registered at the point the end-effector is
desired to be, rather than it’s actual position. This, combined with some delay from the
collision detection scheme makes the collision become registered inside the object. Using
the actual position of the end-effector proved challenging, primarily for two reasons:

41

Chapter 7 Simulation Experiment

1. The force estimate will fluctuate after a collision has been detected, which may
result in repeatedly detected collisions at the same position. This happens because
the new trajectory will bring the error q̃ to zero at first, but the manipulator may
still be affected by collision forces, so when q̃ increases again a new collision will be
registered.

2. The manipulator may get stuck in a loop. Consider the case when a collision is first
detected, and a new trajectory is generated around it. If the new trajectory takes
the manipulator to a collidable object close by, the end-effector might end up sliding
along the object all the way back to where it first collided because of the delay in
the collision detection. Then the collision will be detected at the same point as the
first time, and the same trajectory is generated. Then it starts over again getting
stuck in an infinite loop.

Both of these problems are eliminated by using the desired joint position qd as a starting
point for the collision detection and trajectory generator, at the expense of a less accurate
collision map as has been done in our simulations. These problems can possibly be dealt
with in other ways, and may be a subject of further study.

Consider again Figure 7.5 and notice the zigzag motion of the trajectory especially notice-
able near the destination point. This happens because waypoints are placed by following
the zigzag trajectories seen in Figure 7.4. As discussed in chapter 6, the waypoints could
be placed in such a way that the trajectory becomes smoother. Exactly how this would
be done is another subject of further study.

Collision Detection

The accuracy of the collision detection scheme is dependent on the external force estimate.
As can be seen from Figure 7.6 and Figure 7.7, the estimated collision force is fairly accurate
most of the time. But the estimated force has a tendency to register forces when they
are not occurring, and this seems to be extra dominant whenever the manipulator moves
violently, such as in the zigzag-motion at the end, and during the acceleration at the very
beginning. Such rapid movement produces an error in terms of q̃ in the order of 10−3 [rad]
as seen in Figure 7.9, which leads to an error in the force estimate. With perfectly known
dynamics, and no collision forces, the error should have been zero. But the non-zero error
is thought to be caused by numerical limitations in the simulation and limited resolution
on the desired trajectory qd and its derivatives.

Because of the assumption of a slowly varying r in (5.5), the high-frequency components
of the collision-induced torque is removed from the estimate, and thus also from the force
estimate. This is evident in Figure 7.8. As the manipulator collides with an object, the
energy of the manipulator is usually dissipated in a very short time-span. Thus, the initial
collision is not registered by this collision detection scheme, and it’s only when the inverse
dynamics controller starts to slowly increase the applied force due to the increasing q̃ that
the system will detect collision. This delay is in the order of 0.2-0.5 seconds, although
these values are expected to vary with the chosen ω of the controller.

42

7.3 Discussion

In fact, the force estimation method seems to perform very well as long as the manipulator
is not making violent movement, and as long as high-frequency components are not needed.
On the other hand, for collision detection, this method does not prove adequate. For future
studies, it is recommended to look into other methods to detect collisions and see if these
can provide quicker response time. Suggestions for such methods could be the energy-
based method of (De Luca et al., 2006), although this requires a different formulation of
the manipulator dynamics. One could also consider making a disturbance observer as in
(Takakura et al., 1989), or try to use q̃ and ˙̃q directly for collision detection.

The force estimation method should be tested on a real manipulator to investigate its
effectiveness. In this simulation, it is assumed that dynamics are perfectly known and
no joint friction. With such effects included, the estimation is assumed to become less
accurate.

Overall Scheme

The manipulator can be seen to reach its destination without any prior knowledge on the
environment, and as such the experiment is considered a success. However, the simulation
did show that improvements can be made both to the collision avoidance and collision
detection scheme.

This simulation limited the collision space to a 2-dimensional plane of the workspace. The
methods presented here should be easily generalized to a 3-dimensional collision space.
An even more generalized system should be able to handle collisions along all links in the
manipulator. For such a system, the collision space would need to be placed in the 6-
dimensional configuration space of the manipulator. Since the number of neurons needed
in the collision avoidance scheme increases exponentially with number of dimensions in
the neuronal space, the system will quickly become complex. Using 20 neurons along each
dimension as we used in our 2-d scheme, a 6-d collision space will require 206 = 6.4 · 107

neurons. Increasing the grid resolution in 6-d will quickly demand impossible amount of
computing power. Another important problem that would need to be solved for a 6-d
collision space is the mapping of objects detected in workspace to the 6-d collision space.

For implementation in a real manipulator, the scheme must be able to run in real-time. The
50 sec of time simulated, used around 20min of computational time, which is obviously too
long for real-time. But the dynamics of the manipulator would not need to be calculated
in a real-time system, which would reduce the computation time. The inverse dynamics
controller will still need to be calculated, but is less demanding because it doesn’t need to
calculate the inverse of the inertia matrix. It was also observed that several seconds elapsed
every time a collision was detected, most of the time spent calculating inverse kinematics.
Several manipulators, including the UR5 manipulator, use a hardware implementation
of the controller and inverse kinematics. The only demanding thing to calculate would
then be the neural network path planner, whose complexity is already discussed. Thus,
the real-time limitation on this scheme will mostly depend on the manipulator and the
complexity of the path planner.

43

Chapter 7 Simulation Experiment

Variations on the scheme could be imagined. Instead of retracting the end-effector and
going around the detected object, one could instead go into a force control mode and
explore the object by sliding along it. This may lead to a faster and more accurate
exploration.

44

Chapter 8

Conclusion

We have presented methods for detecting collisions in a robot manipulator, and generat-
ing new trajectories around all objects we collide into. These methods are combined to
take the end-effector of the manipulator from a start point to a destination point in an
unknown environment. The methods does not require any external sensors, but can easily
be combined with such for better performance.

The proposed solution was run in a simulation using Matlab/Simulink. The simulation
experiment was set-up such that the manipulator had to move to a destination point, with
collidable objects modeled as cylinders blocking the path. These objects were initially
unknown to the manipulator, and the manipulator was shown to successfully navigate the
environment and reach its destination.

The simulation and controller required known dynamics of a manipulator, and we devel-
oped the dynamics based on the UR5 manipulator. The dynamics were shown to give
sensible results when run in a simple simulation.

For the collision detection scheme an original method for force estimation without force
sensor was developed by taking advantage of the closed-loop dynamics of the controller. A
collision was registered when the norm of the estimated force was over a certain threshold.
The method presented was shown to give a pretty accurate result for the force estimation,
although only for low-frequency components. High-frequency components of forces were
not detectable, such as at initial collision with an object. The collision was only detected
after the controller had slowly increased the force applied on the object. Hence, the scheme
used an unnecessarily long time before a collision was registered. The force estimation
scheme should be investigated further, but is not ideally suited for collision detection.

The collision avoidance scheme used a path planner based on a Hopfield neural network.
Such a network was chosen primarily to gain experience with neural networks, an impor-
tant topic within the field of robot learning. For future studies other implementations
should also be considered. The path planner was shown to provide an optimal path and
worked fine in the simulation experiment. The path planner generated waypoints in colli-
sion space which were mapped to configuration space, and then connected using smooth
splines to form a complete trajectory. The trajectory could then be used by the inverse
dynamics controller.

45

Chapter 8 Conclusion

8.1. Recommendations for Future Work

In our work, the proposed solution was only implemented in a simulation. A natural
extension to this work would be to implement and test it on a real manipulator to see
how the system copes with more uncertainties. The performance of the force estimate is
especially hard to measure in a simulated environment.

The collision avoidance scheme currently works in a 2-dimensional plane. A further im-
provement would be to generalize the system to the 3-dimensional workspace, or even
better to the 6-dimensional configuration space. This will probably require a more ef-
ficient path planner than the method presented here. Additionally, this will require a
method of mapping objects detected in workspace to the configuration space. The result
will be a solution which will enable the manipulator to explore any environment.

We make an assumption that any collision is occurring at the end-effector. For future
studies, it would be interesting to estimate at which link of the manipulator the collision
occurred, as well as the exact point of impact along this link.

The simulation showed that the use of the force estimate in the collision detection scheme
was not optimal for this task. A more efficient collision detection method should be found.
Some suggestions were given in the discussion of section 7.3. The force estimate, however,
did provide interesting results for low-frequency forces. This may make it very well suited
for some applications, such as assembly tasks. Further studies of the force estimate for
such applications would be interesting.

Currently, when a collision is detected, the manipulator is backed up before it tries to
move around the point of collision. A better solution could possibly be to switch to a
force control mode as soon as a collision is detected and then explore the object by sliding
along it. Such a method should be considered in future work.

46

Appendix A

Definitions and Properties

A.1. Geometric Jacobian

The geometric Jacobian Ji = Ji(q) relates the linear and angular velocities of frame i to
the manipulator’s angular joint velocities, v0

i

ω0
i

 = Jiq̇ (A.1)

where v0
i is the linear velocity of frame i, and ω0

i is the angular velocity of frame i. Both
are given in the inertial frame, denoted by the superscript 0. Furthermore, the Jacobian
can be divided into its linear and angular part such that

Ji =

 Jvi

Jωi

 (A.2)

where the relationship between the frame and joint velocities now becomes

v0
i = Jvi q̇ (A.3)
ω0
i = Jωi q̇ (A.4)

If no i is given, the Jacobian is assumed to be for the end-effector frame, i.e.

J = Jn (A.5)

where n is the number of degrees-of-freedom. Details of finding the Jacobian for a given
manipulator is given in (Spong et al., 2006, sec. 4.6). The end-effector Jacobian of the
UR5 manipulator is calculated using the Robotics Toolbox from (Corke, 2011).

47

Chapter A Definitions and Properties

A.2. Transformation and Rotation Matrices

A set of basic homogeneous transformations is given by (Spong et al., 2006)

Transx,a =



1 0 0 a

0 1 0 0

0 0 1 0

0 0 0 1


Rotx,α =



1 0 0 0

0 cosα - sinα 0

0 sinα cosα 0

0 0 0 1



Transy,b =



1 0 0 0

0 1 0 b

0 0 1 0

0 0 0 1


Roty,β =



cosβ 0 sin β 0

0 1 0 0

- sin β 0 cosβ 0

0 0 0 1



Transz,c =



1 0 0 0

0 1 0 0

0 0 1 c

0 0 0 1


Rotz,γ =



cos γ - sin γ 0 0

sin γ cos γ 0 0

0 0 1 0

0 0 0 1


The rotation matrices R·,· are the upper left 3× 3 elements of Rot·,·, i.e.

Rx,α =


1 0 0

0 cosα - sinα

0 sinα cosα



Ry,β =


cosβ 0 sin β

0 1 0

- sin β 0 cosβ



Rz,γ =


cos γ - sin γ 0

sin γ cos γ 0

0 0 1



A.3. Skew Symmetry

An n × n matrix S is said to be skew symmetric if and only if it has the property such
that

S + ST = 0 (A.6)

48

A.3 Skew Symmetry

The implications of skew symmetry are that the diagonal elements are all zero, and it only
has three independent entries. Every skew symmetric 3× 3-matrix can be written in the
form (Spong et al., 2006)

S =


0 −s3 s2

s3 0 −s1

−s2 s1 0

 (A.7)

49

Appendix B

UR5 Manipulator Dynamics

B.1. Framework (Maple file)

The framework is used to generate the dynamics symbolically, and is based on the work
of (Høifødt, 2011). The Maple file follows on the next page.

51

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

Dynamic Model of the UR 5
The outputs will be written to "Ur5Dynamics.m". Note: The output must be modified slightly to
produce valid Matlab syntax.

#Defining joint variables

#Defining link length vectors

#Gravity vector in inertial frame

#Rotation matrices

Chapter B UR5 Manipulator Dynamics

52

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >
> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

#Axis of rotation of joint i expressed in frame i

#Link Masses

#Sylinder link dimensions

B.1 Framework (Maple file)

53

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >
> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

#Inertia matrices

#Forward recursion: Link 1

#Forward recursion: Link 2

#Forward recursion: Link 3

#Forward recursion: Link 4

Chapter B UR5 Manipulator Dynamics

54

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

#Forward recursion: Link 5

#Forward recursion: Link 6

#Backward recursion: Link 6

#Backward recursion: Link 5

#Backward recursion: Link 4

B.1 Framework (Maple file)

55

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

#Backward recursion: Link 3

#Backward recursion: Link 2

#Backward recursion: Link 1

#Setting up the matrix elements

Chapter B UR5 Manipulator Dynamics

56

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

B.1 Framework (Maple file)

57

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

#Setting up the dynamic system

#Kinetic energy

#Matlab conversion

Chapter B UR5 Manipulator Dynamics

58

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

B.1 Framework (Maple file)

59

Chapter B UR5 Manipulator Dynamics

B.2. Dynamics (Matlab file)

The resulting dynamics are generated from the framework in the previous section and
slightly modified for compatibility with the Matlab syntax.

%The expression for the elements of M,C,g are copied from Maple, and state ...
derivatives have been redefined

m11 = cos(q5) * 0.291736320000000014e−2 + cos((2 * q2)) * 0.413642134999999911e0 + ...
cos((2 * q2) + 0.2e1 * q5) * (−0.162630325872825665e−18) + cos((2 * q2) − 0.2e1 ...
* q5) * (−0.162630325872825665e−18) + cos((2 * q4)) * ...
(−0.433680868994201774e−18) + cos((2 * q2 + 2 * q4)) * 0.433680868994201774e−18 ...
+ cos((2 * q3 + 2 * q4)) * 0.433680868994201774e−18 + cos(0.2e1 * q5 + (2 * q4) ...
+ (2 * q3) + (2 * q2)) * (−0.132212075305000016e−3) + cos(−0.2e1 * q5 + (2 * q4) ...
+ (2 * q3) + (2 * q2)) * (−0.132212075305000016e−3) + cos(0.2e1 * q5) * ...
0.264424150609999706e−3 + cos((2 * q4 + 2 * q3 + 2 * q2)) * ...
(−0.462956163999961659e−5) + cos(q5 + (2 * q4) + (2 * q3) + (2 * q2)) * ...
0.813151629364128326e−19 + cos(−q5 + (2 * q4) + (2 * q3) + (2 * q2)) * ...
0.813151629364128326e−19 + sin((q4 + q3 + 2 * q2)) * (−0.777807799999999990e−2) ...
+ sin((q4 + q3)) * (−0.777807799999999990e−2) + sin(q5 + q4 + q3 + (2 * q2)) * ...
0.284376000000000030e−2 + sin(−q5 + q4 + q3 + (2 * q2)) * ...
(−0.284376000000000030e−2) + sin(q5 + q4 + q3) * 0.284376000000000030e−2 + ...
sin(−q5 + q4 + q3) * (−0.284376000000000030e−2) + 0.578636171160119894e0 + ...
cos((2 * q2) + (2 * q4) − q5) * (−0.271050543121376109e−19) + cos((2 * q3) + (2 ...
* q4) + q5) * 0.271050543121376109e−19 + cos((2 * q4) + q5) * ...
0.271050543121376109e−19 + cos((2 * q2) + (2 * q4) + q5) * ...
(−0.271050543121376109e−19) + cos((2 * q3 + 2 * q2)) * 0.225799867760000036e−1 + ...
cos((2 * q3) + (2 * q4) − q5) * 0.271050543121376109e−19 + cos((2 * q4) − q5) * ...
0.271050543121376109e−19;

m12 = cos((q2 − 2 * q5 − q4 − q3)) * 0.325260651745651330e−18 + cos((2 * q5 + q4 + ...
q3 + q2)) * (−0.264424150609999706e−3) + cos((q5 + q4 + q3 + q2)) * ...
(−0.729340800000000036e−3) + sin((q5 + q2)) * 0.284376000000000030e−2 + sin((−q5 ...
+ q2)) * 0.284376000000000030e−2 + cos((−2 * q5 + q4 + q3 + q2)) * ...
0.264424150610000032e−3 + cos((−q5 + q4 + q3 + q2)) * 0.729340800000000036e−3 + ...
sin(q2) * 0.267177490999999989e0 + cos((q4 + q3 + q2)) * 0.202230028000000006e−2;

m13 = cos(q4 + q3 + q2) * 0.202230028000000006e−2 + cos(q5 + q4 + q3 + q2) * ...
(−0.729340800000000036e−3) + cos(−0.2e1 * q5 + q4 + q3 + q2) * ...
0.264424150610000032e−3 + cos(−q5 + q4 + q3 + q2) * 0.729340800000000036e−3 + ...
cos(0.2e1 * q5 + q4 + q3 + q2) * (−0.264424150610000032e−3);

m14 = cos(q4 + q3 + q2) * 0.202230028000000006e−2 + cos(q5 + q4 + q3 + q2) * ...
(−0.729340800000000036e−3) + cos(−0.2e1 * q5 + q4 + q3 + q2) * ...
0.264424150610000032e−3 + cos(−q5 + q4 + q3 + q2) * 0.729340800000000036e−3 + ...
cos(0.2e1 * q5 + q4 + q3 + q2) * (−0.264424150610000032e−3);

m15 = sin(−q5 + q2) * 0.284376000000000030e−2 + cos(q4 + q3 + q2) * ...
(−0.201419266993000008e−2) + cos(−q5 + q4 + q3 + q2) * ...
(−0.729340800000000036e−3) + cos(q5 + q4 + q3 + q2) * (−0.729340800000000036e−3) ...
+ sin(q5 + q2) * (−0.284376000000000030e−2);

m16 = −0.6087959740e−4 * cos(−q5 + q4 + q3 + q2) + 0.6087959740e−4 * cos(q5 + q4 + ...
q3 + q2);

m21 = sin(q2) * 0.267177490999999989e0 + cos(q4 + q3 + q2) * ...
0.202230028000000006e−2 + cos(−(2 * q5) + q4 + q3 + q2) * ...
0.264424150610000032e−3 + sin(q5 + q2) * 0.284376000000000030e−2 + sin(−q5 + q2) ...
* 0.284376000000000030e−2 + cos((2 * q5) + q4 + q3 + q2) * ...
(−0.264424150610000032e−3) + cos(−q5 + q4 + q3 + q2) * 0.729340800000000036e−3 + ...
cos(q5 + q4 + q3 + q2) * (−0.729340800000000036e−3);

m22 = sin(−q5 + q4 + q3) * (−0.568752000000000060e−2) + sin(q4 + q3) * ...
(−0.155561560000000015e−1) + 0.885518424388219927e0 + cos(0.2e1 * q5) * ...
(−0.528848301220000063e−3) + sin(q5 + q4 + q3) * 0.568752000000000060e−2;

m23 = cos((2 * q5)) * (−0.528848301220000063e−3) + sin((−q5 + q4 + q3)) * ...
(−0.284376000000000030e−2) + sin((q5 + q4 + q3)) * 0.284376000000000030e−2 + ...
0.496708343882199949e−1 + sin((q4 + q3)) * (−0.777807799999999903e−2);

m24 = sin(q5 + q4 + q3) * 0.284376000000000030e−2 + cos(0.2e1 * q5) * ...
(−0.528848301220000063e−3) + sin(q4 + q3) * (−0.777807799999999903e−2) + sin(−q5 ...
+ q4 + q3) * (−0.284376000000000030e−2) + 0.291008553822000044e−2;

m25 = sin(−q5 + q4 + q3) * 0.284376000000000030e−2 + sin(q5 + q4 + q3) * ...
0.284376000000000030e−2;

m26 = 0.1217591948e−3 * cos(q5);
m31 = cos(q4 + q3 + q2) * 0.202230028000000006e−2 + cos(q5 + q4 + q3 + q2) * ...

(−0.729340800000000036e−3) + cos(−0.2e1 * q5 + q4 + q3 + q2) * ...
0.264424150610000032e−3 + cos(−q5 + q4 + q3 + q2) * 0.729340800000000036e−3 + ...
cos(0.2e1 * q5 + q4 + q3 + q2) * (−0.264424150610000032e−3);

60

B.2 Dynamics (Matlab file)

m32 = sin(−q5 + q4 + q3) * (−0.284376000000000030e−2) + cos(0.2e1 * q5) * ...
(−0.528848301220000063e−3) + sin(q4 + q3) * (−0.777807800000000077e−2) + ...
0.496708343882199949e−1 + sin(q5 + q4 + q3) * 0.284376000000000030e−2;

m33 = 0.496708343882199949e−1 + cos((2 * q5)) * (−0.528848301220000063e−3);
m34 = 0.291008553822000044e−2 + cos((2 * q5)) * (−0.528848301220000063e−3);
m35 = 0.0e0;
m36 = 0.1217591948e−3 * cos(q5);
m41 = cos(q4 + q3 + q2) * 0.202230028000000006e−2 + cos(q5 + q4 + q3 + q2) * ...

(−0.729340800000000036e−3) + cos(−0.2e1 * q5 + q4 + q3 + q2) * ...
0.264424150610000032e−3 + cos(−q5 + q4 + q3 + q2) * 0.729340800000000036e−3 + ...
cos(0.2e1 * q5 + q4 + q3 + q2) * (−0.264424150610000032e−3);

m42 = sin(−q5 + q4 + q3) * (−0.284376000000000030e−2) + sin(q5 + q4 + q3) * ...
0.284376000000000030e−2 + cos(0.2e1 * q5) * (−0.528848301220000063e−3) + sin(q4 ...
+ q3) * (−0.777807800000000077e−2) + 0.291008553822000044e−2;

m43 = 0.291008553822000001e−2 + cos((2 * q5)) * (−0.528848301220000063e−3);
m44 = 0.291008553822000044e−2 + cos((2 * q5)) * (−0.528848301220000063e−3);
m45 = 0.0e0;
m46 = 0.1217591948e−3 * cos(q5);
m51 = sin(−q5 + q2) * 0.284376000000000030e−2 + cos(q5 + q4 + q3 + q2) * ...

(−0.729340800000000036e−3) + sin(q5 + q2) * (−0.284376000000000030e−2) + cos(q4 ...
+ q3 + q2) * (−0.201419266993999990e−2) + cos(−q5 + q4 + q3 + q2) * ...
(−0.729340800000000036e−3);

m52 = sin(−q5 + q4 + q3) * 0.284376000000000030e−2 + sin(q5 + q4 + q3) * ...
0.284376000000000030e−2;

m53 = 0.0e0;
m54 = 0.0e0;
m55 = 0.201419266993000008e−2;
m56 = 0.0e0;
m61 = −0.6087959740e−4 * cos(−q5 + q4 + q3 + q2) + 0.6087959740e−4 * cos(q5 + q4 + ...

q3 + q2);
m62 = 0.1217591948e−3 * cos(q5);
m63 = 0.1217591948e−3 * cos(q5);
m64 = 0.1217591948e−3 * cos(q5);
m65 = 0.0e0;
m66 = 0.1217591948e−3;
g1 = 0;
g2 = g * sin(−q5 + q4 + q3 + q2) * 0.669120000000000045e−2 + cos(q2) * g * ...

(−0.237166999999999994e1) + g * sin(q5 + q4 + q3 + q2) * ...
(−0.669120000000000045e−2) + sin(q4 + q3 + q2) * g * 0.183013599999999992e−1;

g3 = g * sin(q5 + q4 + q3 + q2) * (−0.669120000000000045e−2) + sin(q4 + q3 + q2) * ...
g * 0.183013599999999992e−1 + g * sin(−q5 + q4 + q3 + q2) * 0.669120000000000045e−2;

g4 = g * sin(q5 + q4 + q3 + q2) * (−0.669120000000000045e−2) + sin(q4 + q3 + q2) * ...
g * 0.183013599999999992e−1 + g * sin(−q5 + q4 + q3 + q2) * 0.669120000000000045e−2;

g5 = g * sin(−q5 + q4 + q3 + q2) * (−0.669120000000000045e−2) + g * sin(q5 + q4 + ...
q3 + q2) * (−0.669120000000000045e−2);

g6 = 0.0e0;
cdq1 = 0.5000000000e−14 * Dq3 * Dq6 * sin((2 * q6 + q4 + q3 + q2 − q5)) + ...

0.2500000000e−14 * Dq3 * Dq6 * sin((−2 * q6 + q4 + q3 + q2 + 2 * q5)) − ...
0.2500000000e−14 * Dq1 * Dq6 * sin((−2 * q6 + 2 * q4 + 2 * q3 + 2 * q2 − q5)) − ...
0.2500000000e−14 * Dq1 * Dq6 * sin((2 * q6 + q5)) − 0.2500000000e−14 * Dq1 * Dq6 ...
* sin((−2 * q6 + 2 * q4 + 2 * q3 + 2 * q2 + q5)) − 0.5000000000e−14 * Dq1 * Dq6 ...
* sin((2 * q4 + 2 * q3 + 2 * q2)) + 0.5000000000e−14 * Dq1 * Dq6 * sin((−2 * q6 ...
+ 2 * q4 + 2 * q3 + 2 * q2)) + Dq1 * Dq2 * cos((q5 + q4 + q3 + 2 * q2)) * ...
0.568752000000000060e−2 + Dq1 * Dq2 * cos((−q5 + q4 + q3 + 2 * q2)) * ...
(−0.568752000000000060e−2) + Dq1 * Dq2 * cos((q5 + q4 + q3)) * ...
(−0.433680868994201774e−18) + Dq1 * Dq2 * sin((2 * q2 + 2 * q5)) * ...
0.499999889581881352e−13 + Dq1 * Dq2 * sin((2 * q2)) * (−0.827284270000549826e0) ...
+ Dq1 * Dq2 * sin((2 * q5 + 2 * q4 + 2 * q3 + 2 * q2)) * 0.264424150710000009e−3 ...
+ Dq1 * Dq2 * sin((2 * q3)) * 0.499999347480795109e−12 + Dq1 * Dq2 * sin((2 * q4 ...
+ 2 * q3 + 2 * q2)) * 0.925912333000003529e−5 + Dq1 * Dq2 * sin((2 * q3 + 2 * ...
q4)) * 0.499999347480795109e−13 + Dq1 * Dq2 * sin((2 * q2 − 2 * q5)) * ...
(−0.499996908025907016e−13) + Dq1 * Dq2 * sin((2 * q3 + 2 * q2)) * ...
(−0.451599735515000045e−1) + Dq1 * Dq2 * sin((2 * q3 + 2 * q4 − 2 * q5)) * ...
0.499999889581881352e−13 + Dq1 * Dq2 * sin((2 * q3 + 2 * q4 + 2 * q5)) * ...
(−0.499999889581881352e−13) + Dq1 * Dq2 * cos((−q5 + q4 + q3)) * ...
0.433680868994201774e−18 + Dq1 * Dq2 * sin((−2 * q5 + 2 * q4 + 2 * q3 + 2 * q2)) ...
* 0.264424150710000009e−3 + Dq1 * Dq2 * cos((q4 + q3)) * ...
0.173472347597680709e−17 + Dq1 * Dq2 * cos((q4 + q3 + 2 * q2)) * ...
(−0.155561559999999998e−1) + Dq1 * Dq3 * sin((2 * q3 + 2 * q4)) * ...
(−0.499998805379708866e−13) + Dq1 * Dq3 * sin((2 * q2 − 2 * q5)) * ...
0.499999889581881352e−13 + Dq1 * Dq3 * sin((2 * q3 + 2 * q4 − 2 * q5)) * ...
(−0.499999889581881352e−13) + Dq1 * Dq3 * sin((2 * q2 + 2 * q4 + 2 * q5)) * ...
0.135525271560688054e−19 + Dq1 * Dq3 * sin((2 * q4 + 2 * q5)) * ...
(−0.135525271560688054e−19) + Dq1 * Dq3 * sin((2 * q4 − 2 * q5))...

61

Chapter B UR5 Manipulator Dynamics

* (−0.135525271560688054e−19) + Dq1 * Dq3 * sin((2 * q2 + 2 * q4 − 2 * q5)) * ...
0.135525271560688054e−19 + Dq1 * Dq3 * sin((2 * q2 + 2 * q3 − 2 * q5)) * ...
(−0.135525271560688054e−19) + Dq1 * Dq3 * sin((2 * q3 − 2 * q5)) * ...
0.135525271560688054e−19 + Dq1 * Dq3 * sin((2 * q3 + 2 * q5)) * ...
0.135525271560688054e−19 + Dq1 * Dq3 * sin((2 * q2 + 2 * q3 + 2 * q5)) * ...
(−0.135525271560688054e−19) + Dq1 * Dq3 * sin((2 * q2 + 2 * q4)) * ...
(−0.542101086242752217e−19) + Dq1 * Dq3 * sin((2 * q4)) * ...
0.542101086242752217e−19 + Dq1 * Dq3 * sin((2 * q2)) * 0.500016694715554877e−13 ...
+ Dq1 * Dq3 * sin((2 * q3 + 2 * q2)) * (−0.451599735520000004e−1) + Dq1 * Dq3 * ...
sin((2 * q4 + 2 * q3 + 2 * q2)) * 0.925912332999998108e−5 + Dq1 * Dq3 * cos((q4 ...
+ q3 + 2 * q2)) * (−0.777807799999999903e−2) + Dq1 * Dq3 * cos((−q5 + q4 + q3 + ...
2 * q2)) * (−0.284376000000000030e−2) + Dq1 * Dq3 * sin((−2 * q5 + 2 * q4 + 2 * ...
q3 + 2 * q2)) * 0.264424150709999955e−3 + Dq1 * Dq3 * sin((2 * q5 + 2 * q4 + 2 * ...
q3 + 2 * q2)) * 0.264424150659999966e−3 + Dq1 * Dq3 * cos((q5 + q4 + q3 + 2 * ...
q2)) * 0.284376000000000030e−2 + Dq1 * Dq4 * cos((−q5 + q4 + q3 + 2 * q2)) * ...
(−0.284376000000000030e−2) − 0.6087959740e−4 * Dq4 * Dq6 * sin((q5 + q4 + q3 + ...
q2)) − 0.6087959740e−4 * Dq6 * Dq5 * sin((−q5 + q4 + q3 + q2)) − 0.6087959740e−4 ...
* Dq6 * Dq5 * sin((q5 + q4 + q3 + q2)) + Dq1 * Dq4 * sin((−2 * q5 + 2 * q4 + 2 * ...
q3 + 2 * q2)) * 0.264424150784999966e−3 + Dq1 * Dq4 * sin((2 * q3 + 2 * q4 − 2 * ...
q5)) * (−0.124999999500524650e−12) + Dq1 * Dq4 * sin((2 * q5 + 2 * q4 + 2 * q3 + ...
2 * q2)) * 0.264424150709999955e−3 + Dq1 * Dq4 * sin((2 * q2 + 2 * q3 − 2 * q5)) ...
* (−0.135525271560688054e−19) + Dq1 * Dq4 * sin((2 * q3 − 2 * q5)) * ...
0.135525271560688054e−19 + Dq1 * Dq4 * sin((2 * q4 + 2 * q3 + 2 * q2)) * ...
0.925912357999992587e−5 + Dq1 * Dq4 * sin((2 * q3 + 2 * q4)) * ...
(−0.199999955832752541e−12) + Dq1 * Dq4 * sin((2 * q2)) * ...
0.199999955832752541e−12 + Dq1 * Dq4 * cos((q5 + q4 + q3 + 2 * q2)) * ...
0.284376000000000030e−2 + Dq1 * Dq4 * cos((q4 + q3 + 2 * q2)) ...

* (−0.777807799999999903e−2) + Dq1 * Dq4 * sin((2 * q3 + 2 * q4 + 2 * q5)) * ...
0.499999889581881352e−13 + Dq1 * Dq4 * sin((2 * q2 + 2 * q5)) * ...
(−0.499999889581881352e−13) + Dq1 * Dq4 * sin((2 * q2 − 2 * q5)) * ...
0.124999999500524650e−12 + Dq1 * Dq4 * sin((2 * q2 + 2 * q4 − 2 * q5)) * ...
0.135525271560688054e−19 + Dq1 * Dq4 * sin((2 * q4 − 2 * q5)) * ...
(−0.135525271560688054e−19) + Dq1 * Dq5 * sin((2 * q5 + 2 * q4 + 2 * q3 + 2 * ...
q2)) * 0.264424150660000021e−3 + Dq1 * Dq5 * sin((−2 * q5 + 2 * q4 + 2 * q3 + 2 ...
* q2)) * (−0.264424150660000021e−3) + Dq1 * Dq5 * cos((−q5 + q4 + q3 + 2 * q2)) ...
* 0.284376000000000030e−2 + Dq1 * Dq5 * cos((q5 + q4 + q3 + 2 * q2)) * ...
0.284376000000000030e−2 + Dq1 * Dq5 * sin(q5) * (−0.291736320000000014e−2) + Dq1 ...
* Dq3 * cos((q4 + q3)) * (−0.777807799999999903e−2) + Dq1 * Dq3 * cos((q5 + q4 + ...
q3)) * 0.284376000000000030e−2 + Dq1 * Dq3 * cos((−q5 + q4 + q3)) * ...
(−0.284376000000000030e−2) + Dq1 * Dq4 * cos((q4 + q3)) * ...
(−0.777807799999999903e−2) + Dq1 * Dq4 * cos((q5 + q4 + q3)) * ...
0.284376000000000030e−2 + Dq1 * Dq4 * cos((−q5 + q4 + q3)) * ...
(−0.284376000000000030e−2) + Dq1 * Dq5 * cos((q5 + q4 + q3)) * ...
0.284376000000000030e−2 + Dq1 * Dq5 * cos((−q5 + q4 + q3)) * ...
0.284376000000000030e−2 + Dq1 * sin((2 * q5)) * Dq2 * ...
(−0.298155597433513719e−18) + Dq1 * Dq5 * sin((2 * q5)) * ...
(−0.528848301320000041e−3) − 0.5000000000e−14 * Dq1 * Dq6 * sin((2 * q6)) + Dq1 ...
* Dq3 * sin((2 * q5)) * 0.499999889581881352e−13 + Dq1 * Dq4 * sin((2 * q5)) * ...
0.750000105423365149e−13 + 0.2500000000e−14 * Dq1 * Dq6 * sin((−2 * q6 + q5)) + ...
Dq2 * Dq3 * sin((2 * q5 + q4 + q3 + q2)) * 0.528848301319999933e−3 + Dq2 * Dq3 * ...
sin((q2 − q3 + q4 + 2 * q5)) * 0.271050543121376109e−19 + Dq2 * Dq3 * sin((q2 + ...
q3 − q4 + 2 * q5)) * (−0.271050543121376109e−19) + Dq2 * Dq3 * sin((q4 + q3 + ...
q2))...

* (−0.404460056000000012e−2) + Dq2 * Dq3 * sin((−q5 + q4 + q3 + q2)) * ...
(−0.145868160000000007e−2) + Dq2 * Dq3 * sin((q5 + q4 + q3 + q2)) * ...
0.145868160000000007e−2 + Dq2 * Dq3 * sin((q2 − q3 + q4 − 2 * q5)) * ...
(−0.271050543121376109e−19) + Dq2 * Dq3 * sin((q2 + q3 − q4 − 2 * q5)) * ...
0.271050543121376109e−19 + Dq2 * Dq3 * sin((−2 * q5 + q4 + q3 + q2)) * ...
(−0.528848301319999933e−3) + Dq2 * Dq4 * sin((q5 + q4 + q3 + q2)) * ...
0.145868160000000007e−2 + Dq2 * Dq4 * sin((−q5 + q4 + q3 + q2)) * ...
(−0.145868160000000007e−2) + Dq2 * Dq4 * sin((−2 * q5 + q4 + q3 + q2)) * ...
(−0.528848301320000041e−3) + Dq2 * Dq4 * sin((2 * q5 + q4 + q3 + q2)) * ...
0.528848301320000041e−3 + Dq2 * Dq4 * sin((q4 + q3 + q2)) * ...
(−0.404460056000000012e−2) + Dq2 * Dq5 * sin((−2 * q5 + q4 + q3 + q2)) * ...
0.528848301245000030e−3 + Dq2 * Dq5 * sin((q5 + q4 + q3 + q2)) * ...
0.145868160000000007e−2 + Dq2 * Dq5 * sin((−q5 + q4 + q3 + q2)) * ...
0.145868160000000007e−2 + Dq2 * Dq5 * sin((2 * q5 + q4 + q3 + q2)) * ...
0.528848301245000030e−3 + Dq2 * Dq5 * sin((q4 + q3 + q2)) * ...
0.201419267009000013e−2 − 0.5000000000e−14 * Dq2 * Dq6 * sin((−2 * q5 + q4 + q3 ...
+ q2)) − 0.6087959740e−4 * Dq2 * Dq6 * sin((q5 + q4 + q3 + q2)) + ...
0.6087959740e−4 * Dq2 * Dq6 * sin((−q5 + q4 + q3 + q2)) − 0.5000000000e−14 * Dq2 ...
* Dq6 * sin((2 * q5 + q4 + q3 + q2)) − 0.1000000000e−13 * Dq2 * Dq6 * sin((q4 + ...
q3 + q2)) + 0.2500000000e−14 * Dq3 * Dq6 * sin((−2 * q5 + q4 + q3 + q2)) + ...
0.2500000000e−14 * Dq3 * Dq6 * sin((2 * q5 + q4 + q3 + q2)) + Dq3 * Dq4 * ...

62

B.2 Dynamics (Matlab file)

sin((q2 + q3 − q4 − 2 * q5)) * (−0.271050543121376109e−19) + Dq3 * Dq4 * sin((q2 ...
− q3 + q4 + 2 * q5)) * (−0.271050543121376109e−19) + Dq3 * Dq4 * sin((q2 − 2 * ...
q5 − q4 − q3)) * (−0.542101086242752217e−19) + Dq3 * Dq4 * sin((q2 + q3 − q4 + 2 ...
* q5)) ...

* 0.271050543121376109e−19 + Dq3 * Dq4 * sin((q2 − q3 + q4 − 2 * q5)) * ...
0.271050543121376109e−19 + Dq3 * Dq4 * sin((q2 + 2 * q5 − q4 − q3)) * ...
0.542101086242752217e−19 + Dq3 * Dq5 * sin((q2 + 2 * q5 − q4 − q3)) * ...
0.625000268553166372e−13 + Dq3 * Dq5 * sin((q2 − 2 * q5 − q4 − q3)) * ...
0.625000268553166372e−13 + Dq3 * Dq5 * sin((−q3 − q4 + q2)) * ...
0.125000053710633274e−12 + 0.2500000000e−14 * Dq3 * Dq6 * sin((2 * q6 + q4 + q3 ...
+ q2 − 2 * q5)) + 0.2500000000e−14 * Dq3 * Dq6 * sin((2 * q6 + q4 + q3 + q2)) + ...
Dq3 * Dq5 * sin((q4 + q3 + q2)) * 0.201419267021500040e−2 + Dq3 * Dq5 * sin((2 * ...
q5 + q4 + q3 + q2)) * 0.528848301307500057e−3 + Dq3 * Dq5 * sin((−2 * q5 + q4 + ...
q3 + q2)) * 0.528848301307500057e−3 − 0.5000000000e−14 * Dq3 * Dq6 * sin((−2 * ...
q6 + q4 + q3 + q2 + q5)) + Dq3 * Dq4 * sin((2 * q5 + q4 + q3 + q2)) * ...
0.528848301319999933e−3 + Dq3 * Dq4 * sin((−2 * q5 + q4 + q3 + q2)) * ...
(−0.528848301319999933e−3) + Dq3 * Dq4 * sin((q4 + q3 + q2)) * ...
(−0.404460056000000012e−2) + 0.6087959740e−4 * Dq3 * Dq6 * sin((−q5 + q4 + q3 + ...
q2)) − 0.6087959740e−4 * Dq3 * Dq6 * sin((q5 + q4 + q3 + q2)) + 0.5000000000e−14 ...
* Dq3 * Dq6 * sin((q4 + q3 + q2)) + 0.2500000000e−14 * Dq3 * Dq6 * sin((−2 * q6 ...
+ q4 + q3 + q2)) + Dq3 * Dq4 * sin((q5 + q4 + q3 + q2)) * ...
0.145868160000000007e−2 + Dq3 * Dq4 * sin((−q5 + q4 + q3 + q2)) * ...
(−0.145868160000000007e−2) + Dq3 * Dq5 * sin((−q5 + q4 + q3 + q2)) * ...
0.145868160000000007e−2 + Dq3 * Dq5 * sin((q5 + q4 + q3 + q2)) * ...
0.145868160000000007e−2 + Dq4 * Dq5 * sin((−q5 + q4 + q3 + q2)) * ...
0.145868160000000007e−2 + Dq4 * Dq5 * sin((q2 − 2 * q5 − q4 − q3)) * ...
0.750000105423365149e−13 + Dq4 * Dq5 * sin((q4 + q3 + q2)) * ...
0.201419266993999990e−2 + Dq4 * Dq5 * sin((2 * q5 + q4 + q3 + q2)) * ...
0.528848301320000041e−3 + Dq4 * Dq5 * sin((q2 + 2 * q5 − q4 − q3))...

* 0.750000105423365149e−13 + Dq4 * Dq5 * sin((q5 + q4 + q3 + q2)) * ...
0.145868160000000007e−2 + Dq4 * Dq5 * sin((−q3 − q4 + q2)) * ...
(−0.150000021084673030e−12) + Dq4 * Dq5 * sin((−2 * q5 + q4 + q3 + q2)) * ...
0.528848301320000041e−3 − 0.2500000000e−14 * Dq4 * Dq6 * sin((−2 * q6 + q4 + q3 ...
+ q2 + 2 * q5)) − 0.2500000000e−14 * Dq4 * Dq6 * sin((2 * q6 + q4 + q3 + q2)) − ...
0.2500000000e−14 * Dq4 * Dq6 * sin((−2 * q6 + q4 + q3 + q2)) − 0.2500000000e−14 ...
* Dq4 * Dq6 * sin((2 * q6 + q4 + q3 + q2 − 2 * q5)) + 0.5000000000e−14 * Dq4 * ...
Dq6 * sin((q4 + q3 + q2)) + 0.5000000000e−14 * Dq4 * Dq6 * sin((−2 * q6 + q4 + ...
q3 + q2 + q5)) + 0.2500000000e−14 * Dq4 * Dq6 * sin((−2 * q5 + q4 + q3 + q2)) − ...
0.5000000000e−14 * Dq4 * Dq6 * sin((2 * q6 + q4 + q3 + q2 − q5)) + ...
0.2500000000e−14 * Dq4 * Dq6 * sin((2 * q5 + q4 + q3 + q2)) + 0.6087959740e−4 * ...
Dq4 * Dq6 * sin((−q5 + q4 + q3 + q2)) + Dq4 ^ 2 * sin((q2 + 2 * q5 − q4 − q3)) * ...
0.271050543121376109e−19 + Dq4 ^ 2 * sin((q2 + q3 − q4 − 2 * q5)) * ...
(−0.135525271560688054e−19) + Dq4 ^ 2 * sin((q2 − q3 + q4 + 2 * q5)) * ...
(−0.135525271560688054e−19) + Dq4 ^ 2 * sin((2 * q5 + q4 + q3 + q2)) * ...
0.264424150659999966e−3 + Dq4 ^ 2 * sin((q2 − 2 * q5 − q4 − q3)) * ...
(−0.271050543121376109e−19) + Dq4 ^ 2 * sin((q2 + q3 − q4 + 2 * q5)) * ...
0.135525271560688054e−19 + Dq4 ^ 2 * sin((q2 − q3 + q4 − 2 * q5)) * ...
0.135525271560688054e−19 + Dq4 ^ 2 * sin((−2 * q5 + q4 + q3 + q2)) * ...
(−0.264424150659999966e−3) + Dq4 ^ 2 * sin((q4 + q3 + q2)) * ...
(−0.202230028000000006e−2) + Dq4 ^ 2 * sin((q5 + q4 + q3 + q2)) * ...
0.729340800000000036e−3 + Dq4 ^ 2 * sin((−q5 + q4 + q3 + q2)) * ...
(−0.729340800000000036e−3) + Dq5 ^ 2 * sin((−q5 + q4 + q3 + q2)) * ...
(−0.729340800000000036e−3) + Dq5 ^ 2 * cos((q5 + q2)) * ...
(−0.284376000000000030e−2) + Dq5 ^ 2 * sin((q5 + q4 + q3 + q2)) ...

* 0.729340800000000036e−3 + Dq5 ^ 2 * cos((−q5 + q2)) * (−0.284376000000000030e−2) ...
+ Dq3 ^ 2 * sin((q2 − q3 + q4 + 2 * q5)) * 0.135525271560688054e−19 + Dq3 ^ 2 * ...
sin((−2 * q5 + q4 + q3 + q2)) * (−0.264424150659999966e−3) + Dq3 ^ 2 * sin((2 * ...
q5 + q4 + q3 + q2)) * 0.264424150659999966e−3 + Dq3 ^ 2 * sin((q4 + q3 + q2)) * ...
(−0.202230028000000006e−2) + Dq3 ^ 2 * sin((q2 + q3 − q4 − 2 * q5)) * ...
0.135525271560688054e−19 + Dq3 ^ 2 * sin((q5 + q4 + q3 + q2)) * ...
0.729340800000000036e−3 + Dq3 ^ 2 * sin((−q5 + q4 + q3 + q2)) * ...
(−0.729340800000000036e−3) + Dq3 ^ 2 * sin((q2 + q3 − q4 + 2 * q5)) * ...
(−0.135525271560688054e−19) + Dq3 ^ 2 * sin((q2 − q3 + q4 − 2 * q5)) * ...
(−0.135525271560688054e−19) + Dq2 ^ 2 * sin((q2 + 2 * q5 − q4 − q3)) * ...
0.271050543121376109e−19 + Dq2 ^ 2 * sin((−2 * q5 + q4 + q3 + q2)) * ...
(−0.264424150659999966e−3) + Dq2 ^ 2 * sin((q4 + q3 + q2)) * ...
(−0.202230028000000006e−2) + Dq2 ^ 2 * sin((q2 − 2 * q5 − q4 − q3)) * ...
0.325260651745651330e−18 + Dq2 ^ 2 * cos((−q5 + q2)) * 0.284376000000000030e−2 + ...
Dq2 ^ 2 * cos((q5 + q2)) * 0.284376000000000030e−2 + Dq2 ^ 2 * sin((2 * q5 + q4 ...
+ q3 + q2)) * 0.264424150659999641e−3 + Dq2 ^ 2 * sin((q2 + q3 − q4 − 2 * q5)) * ...
(−0.135525271560688054e−19) + Dq2 ^ 2 * sin((q2 − q3 + q4 + 2 * q5)) * ...
(−0.135525271560688054e−19) + Dq2 ^ 2 * sin((q2 + q3 − q4 + 2 * q5)) * ...
0.135525271560688054e−19 + Dq2 ^ 2 * sin((q2 − q3 + q4 − 2 * q5)) * ...
0.135525271560688054e−19 + Dq2 ^ 2 * cos(q2) * 0.267177490999999989e0 + Dq2 ^ 2 ...

63

Chapter B UR5 Manipulator Dynamics

* sin((q5 + q4 + q3 + q2)) * 0.729340800000000036e−3 + Dq2 ^ 2 * sin((−q5 + q4 + ...
q3 + q2)) * (−0.729340800000000036e−3) + Dq1 ^ 2 * sin((q2 + q3 − q4 + 2 * q5)) ...
* (−0.338813178901720136e−19) + Dq1 ^ 2 * sin((q2 − q3 + q4 − 2 * q5)) * ...
(−0.338813178901720136e−19) + Dq1 ^ 2 * sin((q2 − 2 * q5 − q4 − q3)) * ...
0.243945488809238498e−18 + Dq1 ^ 2 * sin((q2 − q3 + q4 + 2 * q5)) * ...
0.338813178901720136e−19 + Dq1 ^ 2 * sin((q2 + q3 − q4 − 2 * q5)) * ...
0.338813178901720136e−19 + Dq1 ^ 2 * cos((2 * q3 + 2 * q4 − q5 + q2)) ...

* 0.542101086242752217e−19 + Dq1 ^ 2 * sin((q2 + 2 * q5 − q4 − q3)) * ...
(−0.271050543121376109e−19) + Dq1 ^ 2 * cos(q2) * 0.277555756156289135e−16 + Dq1 ...
^ 2 * sin((3 * q2 − 2 * q5 + q4 + q3)) * 0.948676900924816380e−19 + Dq1 ^ 2 * ...
sin((3 * q2 + 2 * q5 + q4 + q3)) * 0.271050543121376109e−19 + Dq1 ^ 2 * sin((3 * ...
q2 + 3 * q3 + 3 * q4 − q5)) * 0.271050543121376109e−19 + Dq1 ^ 2 * cos((3 * q2 + ...
q5 + 2 * q4 + 2 * q3)) * 0.542101086242752217e−19 + Dq1 ^ 2 * cos((3 * q2 − q5 + ...
2 * q4 + 2 * q3)) * 0.542101086242752217e−19 + Dq1 ^ 2 * cos((2 * q3 + 2 * q4 + ...
q5 + q2)) * 0.542101086242752217e−19 + Dq1 ^ 2 * sin((3 * q2 + 3 * q3 + 3 * q4 + ...
q5)) * (−0.271050543121376109e−19) + Dq1 ^ 2 * sin((3 * q2 + q3 + 3 * q4 + 2 * ...
q5)) * (−0.338813178901720136e−20) + Dq1 ^ 2 * sin((q2 + q3 + 3 * q4 + 2 * q5)) ...
* 0.338813178901720136e−20 + Dq1 ^ 2 * sin((3 * q2 + 3 * q3 + 3 * q4 + 2 * q5)) ...
* 0.101643953670516041e−19 + Dq1 ^ 2 * sin((q2 + 3 * q3 + 3 * q4 + 2 * q5)) * ...
0.338813178901720136e−20 + Dq1 ^ 2 * sin((3 * q2 + 3 * q3 + q4 + 2 * q5)) * ...
0.677626357803440271e−20 + Dq1 ^ 2 * sin((q2 + 3 * q3 + q4 + 2 * q5)) * ...
(−0.677626357803440271e−20) + Dq1 ^ 2 * sin((−2 * q5 + q4 + q3 + q2)) * ...
0.149077798716756860e−18 + Dq1 ^ 2 * sin((2 * q5 + q4 + q3 + q2)) * ...
(−0.216840434497100887e−18) + Dq1 ^ 2 * cos((−q5 + q2)) * ...
0.216840434497100887e−18 + Dq1 ^ 2 * cos((q5 + q2)) * 0.216840434497100887e−18;

cdq2 = Dq1 ^ 2 * sin((2 * q4 + 2 * q3 + 2 * q2)) * (−0.462956153999997749e−5) + Dq1 ...
^ 2 * cos((−q5 + q4 + q3 + 2 * q2)) * 0.284376000000000030e−2 + Dq1 ^ 2 * ...
cos((q5 + q4 + q3 + 2 * q2)) * (−0.284376000000000030e−2) + Dq1 ^ 2 * cos((−q5 + ...
q4 + q3)) * 0.216840434497100887e−18 + Dq1 ^ 2 * cos((q5 + q4 + q3)) * ...
(−0.216840434497100887e−18) + Dq1 ^ 2 * cos((q4 + q3 + 2 * q2)) * ...
0.777807799999999990e−2 + Dq1 ^ 2 * cos((q4 + q3)) * 0.867361737988403547e−18 + ...
Dq2 ^ 2 * cos((q4 + q3)) * 0.173472347597680709e−17 + 0.2e−12 * Dq1 * Dq2 * ...
sin((q4 + q3 + q2)) − 0.2e−12 * Dq1 * Dq3 * sin((q4 + q3 + q2)) + 0.1e−12 * Dq1 ...
* sin((q4 + q3 + q2)) * Dq4 + Dq1 ^ 2 * sin((2 * q2)) * 0.413642134999999911e0 + ...
Dq5 ^ 2 * cos((−q5 + q4 + q3)) * (−0.284376000000000030e−2) + Dq5 ^ 2 * cos((q5 ...
+ q4 + q3)) * 0.284376000000000030e−2 + Dq3 ^ 2 * cos((q4 + q3)) * ...
(−0.777807799999999903e−2) + Dq3 ^ 2 * cos((q5 + q4 + q3)) * ...
0.284376000000000030e−2 + Dq3 ^ 2 * cos((−q5 + q4 + q3)) * ...
(−0.284376000000000030e−2) + Dq4 ^ 2 * cos((q4 + q3)) * ...
(−0.777807799999999903e−2) + Dq4 ^ 2 * cos((q5 + q4 + q3)) * ...
0.284376000000000030e−2 + Dq4 ^ 2 * cos((−q5 + q4 + q3)) * ...
(−0.284376000000000030e−2) + Dq1 * Dq5 * cos((q5 + q2)) * ...
0.568752000000000060e−2 + Dq1 * Dq5 * cos((−q5 + q2)) * ...
(−0.568752000000000060e−2) + Dq2 * Dq3 * cos((q4 + q3)) * ...
(−0.155561559999999981e−1) + Dq2 * Dq3 * cos((q5 + q4 + q3)) * ...
0.568752000000000060e−2 + Dq2 * Dq3 * cos((−q5 + q4 + q3)) * ...
(−0.568752000000000060e−2) + Dq2 * Dq4 * cos((q4 + q3)) * ...
(−0.155561559999999981e−1) + Dq2 * Dq4 * cos((q5 + q4 + q3)) * ...
0.568752000000000060e−2 ...

+ Dq2 * Dq4 * cos((−q5 + q4 + q3)) * (−0.568752000000000060e−2) + Dq2 * Dq5 * ...
cos((q5 + q4 + q3)) * 0.568752000000000060e−2 + Dq2 * Dq5 * cos((−q5 + q4 + q3)) ...
* 0.568752000000000060e−2 + Dq3 * Dq4 * cos((q4 + q3)) * ...
(−0.155561559999999981e−1) + Dq3 * Dq4 * cos((q5 + q4 + q3)) * ...
0.568752000000000060e−2 + Dq3 * Dq4 * cos((−q5 + q4 + q3)) * ...
(−0.568752000000000060e−2) + Dq3 * Dq5 * cos((q5 + q4 + q3)) * ...
0.568752000000000060e−2 + Dq3 * Dq5 * cos((−q5 + q4 + q3)) * ...
0.568752000000000060e−2 + Dq4 * Dq5 * cos((q5 + q4 + q3)) * ...
0.568752000000000060e−2 + Dq4 * Dq5 * cos((−q5 + q4 + q3)) * ...
0.568752000000000060e−2 + Dq1 ^ 2 * sin((2 * q3 + 2 * q2)) * ...
0.225799867799999984e−1 − 0.1217591948e−3 * sin(q5) * Dq6 * Dq5 + Dq1 * Dq5 * ...
sin((q4 + q3 + q2)) * (−0.201419266984000003e−2) + Dq1 * Dq5 * sin((2 * q5 + q4 ...
+ q3 + q2)) * 0.528848301320000041e−3 + Dq1 * Dq5 * sin((−2 * q5 + q4 + q3 + ...
q2)) * 0.528848301320000041e−3 + 0.5000000000e−14 * Dq1 * Dq6 * sin((−2 * q6 + ...
q4 + q3 + q2 − q5)) − 0.5000000000e−14 * Dq1 * Dq6 * sin((−2 * q6 + q4 + q3 + q2 ...
+ q5)) − 0.1000000000e−13 * Dq2 * Dq6 * sin((2 * q5)) + Dq2 * Dq5 * sin((2 * ...
q5)) * 0.105769660249000006e−2 + Dq3 * Dq5 * sin((2 * q5)) * ...
0.105769660274000017e−2 + 0.5000000000e−14 * Dq3 * Dq6 * sin((−2 * q6 + 2 * q5)) ...
+ 0.5000000000e−14 * Dq3 * Dq6 * sin((2 * q6)) + 0.5000000000e−14 * Dq3 * Dq6 * ...
sin((2 * q5)) + Dq4 * Dq5 * sin((2 * q5)) * 0.105769660279000010e−2 − ...
0.5000000000e−14 * Dq4 * Dq6 * sin((−2 * q6 + 2 * q5)) − 0.5000000000e−14 * Dq4 ...
* Dq6 * sin((2 * q6)) + 0.5000000000e−14 * Dq4 * Dq6 * sin((2 * q5)) + 0.2e−12 * ...
Dq1 * Dq2 * sin((2 * q5 + q4 + q3 + q2)) − 0.2e−12 * Dq1 * Dq3 * sin((−2 * q5 + ...
q4 + q3 + q2)) − 0.5e−12 * Dq1 * Dq4 * sin((−2 * q5 + q4 + q3 + q2)) − ...
0.6087959740e−4 * Dq1 * Dq6 * sin((−q5 + q4 + q3 + q2)) + 0.6087959740e−4 * Dq1 ...

64

B.2 Dynamics (Matlab file)

* Dq6 * sin((q5 + q4 + q3 + q2)) + Dq1 ^ 2 * sin((−2 * q5 + 2 * q4 + 2 * q3 + 2 ...
* q2)) * (−0.132212075330000010e−3) + Dq1 ^ 2 * sin((2 * q5 + 2 * q4 + 2 * q3 + ...
2 * q2)) * (−0.132212075330000010e−3);

cdq3 = Dq1 ^ 2 * sin((2 * q4 + 2 * q3 + 2 * q2)) * (−0.462956153999999104e−5) + Dq1 ...
^ 2 * cos((−q5 + q4 + q3 + 2 * q2)) * 0.142188000000000015e−2 + Dq1 ^ 2 * ...
cos((q5 + q4 + q3 + 2 * q2)) * (−0.142188000000000015e−2) + Dq1 ^ 2 * cos((−q5 + ...
q4 + q3)) * 0.142188000000000015e−2 + Dq1 ^ 2 * cos((q5 + q4 + q3)) * ...
(−0.142188000000000015e−2) + Dq2 ^ 2 * cos((−q5 + q4 + q3)) * ...
0.284376000000000030e−2 + Dq2 ^ 2 * cos((q5 + q4 + q3)) * ...
(−0.284376000000000030e−2) + Dq1 ^ 2 * cos((q4 + q3 + 2 * q2)) * ...
0.388903900000000038e−2 + Dq1 ^ 2 * cos((q4 + q3)) * 0.388903900000000038e−2 + ...
Dq2 ^ 2 * cos((q4 + q3)) * 0.777807800000000077e−2 − 0.3e−12 * Dq1 * sin((q4 + ...
q3 + q2)) * Dq4 + 0.2257998678e−1 * Dq1 ^ 2 * sin((2 * q3 + 2 * q2)) − ...
0.1217591948e−3 * sin(q5) * Dq6 * Dq5 + Dq1 * Dq5 * sin((q4 + q3 + q2)) * ...
(−0.201419266984000046e−2) + Dq1 * Dq5 * sin((2 * q5 + q4 + q3 + q2)) * ...
0.528848301320000041e−3 + Dq1 * Dq5 * sin((−2 * q5 + q4 + q3 + q2)) * ...
0.528848301320000149e−3 + 0.5000000000e−14 * Dq1 * Dq6 * sin((−2 * q6 + q4 + q3 ...
+ q2 − q5)) − 0.5000000000e−14 * Dq1 * Dq6 * sin((−2 * q6 + q4 + q3 + q2 + q5)) ...
− 0.1000000000e−13 * Dq2 * Dq6 * sin((2 * q5)) + Dq2 * Dq5 * sin((2 * q5)) * ...
0.105769660249000006e−2 + Dq3 * Dq5 * sin((2 * q5)) * 0.105769660249000006e−2 + ...
0.5000000000e−14 * Dq3 * Dq6 * sin((−2 * q6 + 2 * q5)) + 0.5000000000e−14 * Dq3 ...
* Dq6 * sin((2 * q6)) + 0.5000000000e−14 * Dq3 * Dq6 * sin((2 * q5)) + Dq4 * Dq5 ...
* sin((2 * q5)) * 0.105769660274000017e−2 − 0.5000000000e−14 * Dq4 * Dq6 * ...
sin((−2 * q6 + 2 * q5)) − 0.5000000000e−14 * Dq4 * Dq6 * sin((2 * q6)) + ...
0.5000000000e−14 * Dq4 * Dq6 * sin((2 * q5)) − 0.5e−12 * Dq1 * Dq2 * sin((−2 * ...
q5 + q4 + q3 + q2)) + 0.1e−12 * Dq1 * Dq2 * sin((2 * q5 + q4 + q3 + q2)) + ...
0.1e−12 * Dq1 * Dq4 * sin((2 * q5 + q4 + q3 + q2)) − 0.2e−12 * Dq1 * Dq4 * ...
sin((−2 * q5 + q4 + q3 + q2)) − 0.6087959740e−4 * Dq1 * Dq6 * sin((−q5 + q4 + q3 ...
+ q2)) + 0.6087959740e−4 * Dq1 * Dq6 * sin((q5 + q4 + q3 + q2)) + Dq1 ^ 2 * ...
sin((−2 * q5 + 2 * q4 + 2 * q3 + 2 * q2)) * (−0.132212075330000010e−3) + Dq1 ^ 2 ...
* sin((2 * q5 + 2 * q4 + 2 * q3 + 2 * q2)) * (−0.132212075330000010e−3);

cdq4 = Dq1 ^ 2 * sin((2 * q4 + 2 * q3 + 2 * q2)) * (−0.462956153999999104e−5) + Dq1 ...
^ 2 * cos((−q5 + q4 + q3 + 2 * q2)) * 0.142188000000000015e−2 + Dq1 ^ 2 * ...
cos((q5 + q4 + q3 + 2 * q2)) * (−0.142188000000000015e−2) + Dq1 ^ 2 * cos((−q5 + ...
q4 + q3)) * 0.142188000000000015e−2 + Dq1 ^ 2 * cos((q5 + q4 + q3)) * ...
(−0.142188000000000015e−2) + Dq2 ^ 2 * cos((−q5 + q4 + q3)) * ...
0.284376000000000030e−2 + Dq2 ^ 2 * cos((q5 + q4 + q3)) * ...
(−0.284376000000000030e−2) + Dq1 ^ 2 * cos((q4 + q3 + 2 * q2)) * ...
0.388903900000000038e−2 + Dq1 ^ 2 * cos((q4 + q3)) * 0.388903900000000038e−2 + ...
Dq2 ^ 2 * cos((q4 + q3)) * 0.777807800000000077e−2 − 0.3e−12 * Dq1 * sin((q4 + ...
q3 + q2)) * Dq4 − 0.1217591948e−3 * sin(q5) * Dq6 * Dq5 + Dq1 * Dq5 * sin((q4 + ...
q3 + q2)) * (−0.201419266984000046e−2) + Dq1 * Dq5 * sin((2 * q5 + q4 + q3 + ...
q2)) * 0.528848301320000041e−3 + Dq1 * Dq5 * sin((−2 * q5 + q4 + q3 + q2)) * ...
0.528848301320000149e−3 + 0.5000000000e−14 * Dq1 * Dq6 * sin((−2 * q6 + q4 + q3 ...
+ q2 − q5)) − 0.5000000000e−14 * Dq1 * Dq6 * sin((−2 * q6 + q4 + q3 + q2 + q5)) ...
− 0.1000000000e−13 * Dq2 * Dq6 * sin((2 * q5)) + Dq2 * Dq5 * sin((2 * q5)) * ...
0.105769660249000006e−2 + Dq3 * Dq5 * sin((2 * q5)) * 0.105769660249000006e−2 + ...
0.5000000000e−14 * Dq3 * Dq6 * sin((−2 * q6 + 2 * q5)) + 0.5000000000e−14 * Dq3 ...
* Dq6 * sin((2 * q6)) + 0.5000000000e−14 * Dq3 * Dq6 * sin((2 * q5)) + Dq4 * Dq5 ...
* sin((2 * q5)) * 0.105769660274000017e−2 − 0.5000000000e−14 * Dq4 * Dq6 * ...
sin((−2 * q6 + 2 * q5)) − 0.5000000000e−14 * Dq4 * Dq6 * sin((2 * q6)) + ...
0.5000000000e−14 * Dq4 * Dq6 * sin((2 * q5)) − 0.5e−12 * Dq1 * Dq2 * sin((−2 * ...
q5 + q4 + q3 + q2)) + 0.1e−12 * Dq1 * Dq2 * sin((2 * q5 + q4 + q3 + q2)) + ...
0.1e−12 * Dq1 * Dq4 * sin((2 * q5 + q4 + q3 + q2)) − 0.2e−12 * Dq1 * Dq4 * ...
sin((−2 * q5 + q4 + q3 + q2)) − 0.6087959740e−4 * Dq1 * Dq6 * sin((−q5 + q4 + q3 ...
+ q2)) + 0.6087959740e−4 * Dq1 * Dq6 * sin((q5 + q4 + q3 + q2)) + Dq1 ^ 2 * ...
sin((−2 * q5 + 2 * q4 + 2 * q3 + 2 * q2)) * (−0.132212075330000010e−3) + Dq1 ^ 2 ...
* sin((2 * q5 + 2 * q4 + 2 * q3 + 2 * q2)) * (−0.132212075330000010e−3);

cdq5 = Dq1 ^ 2 * cos((−q5 + q4 + q3 + 2 * q2)) * (−0.142188000000000015e−2) + Dq1 ^ ...
2 * cos((q5 + q4 + q3 + 2 * q2)) * (−0.142188000000000015e−2) + Dq1 ^ 2 * ...
cos((−q5 + q4 + q3)) * (−0.142188000000000015e−2) + Dq1 ^ 2 * cos((q5 + q4 + ...
q3)) * (−0.142188000000000015e−2) + Dq2 ^ 2 * cos((−q5 + q4 + q3)) * ...
(−0.284376000000000030e−2) + Dq2 ^ 2 * cos((q5 + q4 + q3)) * ...
(−0.284376000000000030e−2) + Dq1 * Dq2 * sin((q4 + q3 + q2)) * ...
0.201419266993999990e−2 + Dq1 * Dq3 * sin((q4 + q3 + q2)) * ...
0.201419266993999990e−2 + Dq1 * sin((q4 + q3 + q2)) * Dq4 * ...
0.201419266993999990e−2 + sin(q5) * Dq1 ^ 2 * 0.145868160000000007e−2 + Dq1 * ...
Dq2 * cos((−q5 + q2)) * 0.568752000000000060e−2 + Dq1 * Dq2 * cos((q5 + q2)) * ...
(−0.568752000000000060e−2) + Dq3 ^ 2 * sin((2 * q5)) * ...
(−0.528848301320000041e−3) + Dq4 ^ 2 * sin((2 * q5)) * ...
(−0.528848301320000041e−3) + Dq1 * Dq2 * sin((−2 * q5 + q4 + q3 + q2)) * ...
(−0.528848301319999933e−3) + Dq1 * Dq2 * sin((2 * q5 + q4 + q3 + q2)) * ...
(−0.528848301320000041e−3) + Dq1 * Dq3 * sin((−2 * q5 + q4 + q3 + q2)) * ...
(−0.528848301320000041e−3) + Dq1 * Dq3 * sin((2 * q5 + q4 + q3 + q2)) * ...

65

Chapter B UR5 Manipulator Dynamics

(−0.528848301320000041e−3) + Dq1 * Dq4 * sin((2 * q5 + q4 + q3 + q2)) * ...
(−0.528848301320000041e−3) + Dq1 * Dq4 * sin((−2 * q5 + q4 + q3 + q2)) * ...
(−0.528848301319999933e−3) + 0.6087959740e−4 * Dq1 * Dq6 * sin((−q5 + q4 + q3 + ...
q2)) + 0.6087959740e−4 * Dq1 * Dq6 * sin((q5 + q4 + q3 + q2)) + 0.1e−13 * Dq1 * ...
Dq6 * sin((q4 + q3 + q2)) − 0.1e−13 * Dq1 * Dq6 * sin((−2 * q6 + q4 + q3 + q2)) ...
+ Dq2 * Dq3 * sin((2 * q5)) * (−0.105769660264000008e−2) + Dq2 * Dq4 * sin((2 * ...
q5)) * (−0.105769660264000008e−2) + 0.1217591948e−3 * Dq2 * Dq6 * sin(q5) + Dq3 ...
* Dq4 * sin((2 * q5)) * (−0.105769660264000008e−2) + 0.1217591948e−3 * Dq3 * Dq6 ...
* sin(q5) + 0.1e−13 * Dq3 * Dq6 * sin((−2 * q6 + q5)) + 0.1217591948e−3 * Dq6 * ...
Dq4 * sin(q5) − 0.1e−13 * Dq6 * Dq4 * sin((−2 * q6 + q5)) + Dq1 ^ 2 * sin((−2 * ...
q5 + 2 * q4 + 2 * q3 + 2 * q2)) * 0.132212075330000010e−3 + Dq1 ^ 2 * sin((2 * ...
q5)) * 0.264424150660000021e−3 + Dq1 ^ 2 * sin((2 * q5 + 2 * q4 + 2 * q3 + 2 * ...
q2)) * (−0.132212075330000010e−3) + Dq2 ^ 2 * sin((2 * q5)) * ...
(−0.528848301319999933e−3);

cdq6 = −0.6087959740e−4 * Dq1 * Dq2 * sin(q5 + q4 + q3 + q2) + 0.6087959740e−4 * ...
Dq1 * Dq2 * sin(−q5 + q4 + q3 + q2) − 0.6087959740e−4 * Dq1 * Dq3 * sin(q5 + q4 ...
+ q3 + q2) + 0.6087959740e−4 * Dq1 * Dq3 * sin(−q5 + q4 + q3 + q2) − ...
0.6087959740e−4 * Dq1 * Dq4 * sin(q5 + q4 + q3 + q2) + 0.6087959740e−4 * Dq1 * ...
Dq4 * sin(−q5 + q4 + q3 + q2) − 0.6087959740e−4 * Dq5 * Dq1 * sin(−q5 + q4 + q3 ...
+ q2) − 0.6087959740e−4 * Dq5 * Dq1 * sin(q5 + q4 + q3 + q2) − 0.1217591948e−3 * ...
Dq5 * sin(q5) * Dq4 − 0.1217591948e−3 * Dq5 * sin(q5) * Dq2 − 0.1217591948e−3 * ...
Dq5 * sin(q5) * Dq3;

%Setting up the matrices
M = [m11 m12 m13 m14 m15 m16;m21 m22 m23 m24 m25 m26;m31 m32 m33 m34 m35 m36;m41 ...

m42 m43 m44 m45 m46;m51 m52 m53 m54 m55 m56;m61 m62 m63 m64 m65 m66];
G = [g1;g2;g3;g4;g5;g6];
CDq = [cdq1;cdq2;cdq3;cdq4;cdq5;cdq6];

66

Appendix C

Simulation Experiment Implemen-
tation

The simulation experiment contains too much code to be reproduced here to its full extent,
but a selection of the most central functions is given in this appendix. The author can be
contacted for the rest of the code.

C.1. Simulink Diagrams

The top-level block diagram is shown in Figure 7.1. The first subsystem, the trajectory
generator, is shown in FigureC.1. The second subsystem, which contains the inverse
dynamics controller and force estimator, is shown in FigureC.2. The last subsystem, which
generates collision forces and implement the forward dynamics of the UR5 manipulator,
is shown in FigureC.3.

1

qd

2

qd_dot

3

qd_ddot

1

F_hat

t_now<Lo>

qd_now<Lo>

qd_dot_now<Lo>

Counter<Lo>

t_reactivate

t_ref

qd

qd_dot

qd_ddot

Counter++

Generate New Trajectory

t_now

t_ref

y_data

y_now
fcnfcn

Interpolate qd

Clock

t_now

t_ref

y_data

y_now
fcnfcn

Interpolate qd_dot

t_now

t_ref

y_data

y_now
fcnfcn

Interpolate qd_ddot

collisions

To Workspace

t_now

t_reactivate

F_hat

Collision

Trigger Collision

Counter

Figure C.1: Trajectory generator

67

Chapter C Simulation Experiment Implementation

K0* u

K0

K1* u

K1

1

qd

2

qd_dot

1

tau

3

qd_ddot

4

q

5

q_dot

ur5_inverse_dynamics

Level-2 MATLAB S-Function

q

q_tilde

F_hat

Force estimator

2

F_hat

q_tilde

To Workspace

F_hat

To Workspace2

q_tilde_dot

To Workspace1

tau

a_q

q_dot

q

Figure C.2: Inverse dynamics controller and force estimator

tau_tot

To Workspace2

states

To Workspace

ur5_forward_dynamics

Manipulator forward dynamics

1
s

Integrator

tau_K

To Workspace1

ur5_collision_forces

Collision induced torque

F

To Workspace3

1

tau

1

q

2

q_dot

q

tau_tot

tau_K

q, q_dot

q, q_dotq_dot, q_ddot

q_dot

Figure C.3: UR5 model dynamics

68

C.2 Matlab Code

C.2. Matlab Code

Some of the code requires the robotics toolbox (Corke, 2011) to be installed. The functions
are called from the Simulink model either as S-functions or as interpreted Matlab functions.

C.2.1. UR5 Forward Dynamics (S-function)

The usage of this function can be seen in FigureC.3. The inverse dynamics controller and
force estimator is implemented in a similar way.

function ur5_forward_dynamics(block)
%SFUNDSC2_LEVEL2 Level−2 version of sfundsc2.m
%
% Copyright 2003−2007 The MathWorks, Inc.

%%
%% The setup method is used to setup the basic attributes of the
%% S−function such as ports, parameters, etc. Do not add any other
%% calls to the main body of the function.
%%
setup(block);

%endfunction

function setup(block)

% Register number of ports
block.NumInputPorts = 2;
block.NumOutputPorts = 1;

% Setup port properties to be inherited or dynamic
block.SetPreCompInpPortInfoToDynamic;
block.SetPreCompOutPortInfoToDynamic;

% Override input port properties
block.InputPort(1).Dimensions = [12 1];
block.InputPort(2).Dimensions = [6 1];
block.InputPort(1).DirectFeedthrough = false;
block.InputPort(2).DirectFeedthrough = false;

% Override output port properties
block.OutputPort(1).Dimensions = [12 1];

% Register parameters
block.NumDialogPrms = 0;

% Register sample times
block.SampleTimes = [−1 0];

%% −−−
%% Options
%% −−−
% Specify if Accelerator should use TLC or call back into
% M−file
block.SetAccelRunOnTLC(false);

%% −−−
%% Register methods
%% −−−
block.RegBlockMethod('InitializeConditions', @InitializeConditions);
block.RegBlockMethod('Outputs', @Outputs);

%endfunction

69

Chapter C Simulation Experiment Implementation

%% −−−
%% The local functions
%% −−−

function InitializeConditions(block)
block.InputPort(1).Data(1) = 0;
block.InputPort(1).Data(2) = 0;
block.InputPort(1).Data(3) = 0;
block.InputPort(1).Data(4) = 0;
block.InputPort(1).Data(5) = 0;
block.InputPort(1).Data(6) = 0;
block.InputPort(1).Data(7) = 0;
block.InputPort(1).Data(8) = 0;
block.InputPort(1).Data(9) = 0;
block.InputPort(1).Data(10) = 0;
block.InputPort(1).Data(11) = 0;
block.InputPort(1).Data(12) = 0;

function Outputs(block)

%Defining input ports
u = block.InputPort(2).Data(1:6);
q = block.InputPort(1).Data(1:6);
Dq = block.InputPort(1).Data(7:12);

[M, G, CDq] = ur5_dynamics(q, Dq);

%Computing the model
DDq = M\(−CDq−G+u);

%Sending to output port
block.OutputPort(1).Data = [Dq; DDq];

C.2.2. Trajectory Generator

This function is run after every collision detected and generates a new trajectory for the
controller.

function y = ur5_generate_trajectory(u)
%Returns a new desired trajecory after a collision is detected.
% u = [t, q, q_dot]
% y = [t_ref, qd, qd_dot, qd_ddot]

global I ur5 PathGen

t0 = u(1);
q0 = u(2:7);
q0_dot = u(8:13);
initializing = 0;

if q0==zeros(6,1)
q0 = [2.5511 −1.1193 2.5706 0.1196 1.5708 −0.5905]';
initializing = 1;

end

R = [0 1 0; 1 0 0; 0 0 −1];

%% Find current position in collision−space

[J, T] = ur5_jacobian(q0);

[~,pos_w] = tr2rt(T);
vel_w = J(1:3,:)*q0_dot;

% From workspace xy−coordinates to collision−space
pos_c = zeros(1,2);
pos_c(1) = round (1 / 0.0263 * (pos_w(1) − 0.1238));

70

C.2 Matlab Code

pos_c(2) = round (1 / 0.0263 * (pos_w(2) + 0.2762));

% Add current point to collision map unless we are initializing
if ~initializing

if I(pos_c(1),pos_c(2)) == −1
disp('Warning: Collision already happened here.');

end

I(pos_c(1),pos_c(2)) = −1;

if abs(vel_w(1)) > abs(vel_w(2))
% collision in x−direction
pos_c(1) = pos_c(1) − sign(vel_w(1));

else
% collision in y−direction
pos_c(2) = pos_c(2) − sign(vel_w(2));

end

end

pos_c(1) = max(pos_c(1),2);

%% Run the Hopfield neural network to generate a new path

disp(['Collision at time: ' num2str(t0) ':']);
disp('q(t):');
disp(q0);

[trajectory, ~,path] = hopfield_path_planner(pos_c(1), pos_c(2), 18, 7, I);
PathGen(:,:,end+1)=path;

%% From collision space coordinates of neural network to workspace xy−coordinates
% x_w = 0.0263*x_g + 0.1238;
% y_w = 0.0263*y_g − 0.2762;

rows = size(trajectory,1);
trajectory(:,1) = 0.0263 * (trajectory(:,1)) + 0.1238;
trajectory(:,2) = 0.0263 * (trajectory(:,2)) − 0.2762;
trajectory(:,3) = zeros(rows,1);

R0(:,:,1:rows+1) = reshape(repmat(R,1,rows+1),3,3,rows+1);

T = rt2tr(R0, [pos_w'; trajectory]');

% Waypoints to configuration space
Q = ur5.ikine(T,q0,'tol',1e−4,'ilimit',15000);

%% Generate full trajectory by connecting smooth splines
num_rows = 5000;
m = 100;
T = round(size(Q,1)/2);
dt = 1/((size(Q,1)−1)*m)*T;
t = (0:dt:num_rows*dt−1e−10) + t0;

[qt,qdt,qddt] = jtrajcombine(Q, m, num_rows, q0_dot');

disp('New trajectory generated.')

y = [t', qt, qdt, qddt];

end

71

Chapter C Simulation Experiment Implementation

C.2.3. Hopfield Neural Network Path Planner

This function implements the Hopfield neural network of chapter 6. In the first stage it
iterates the neural network until convergence, and in the second stage it finds the shortest
path by following the steepest ascent along connected neurons.

function [trajectory, sigma, path] = hopfield_path_planner(x0, y0, x_d, y_d, I)
%Returns the shortest path from (x0,y0) to (x_d,y_d) in the neuronal space
%defined by I. I is an n*m matrix with value of −1 at obstructions and +1
%value at destination, free space must have value 0.
% Trajectory returns a set of (u,v) coordinates from initial point to
%destination. Sigma returns the final state values of the neural network.
%Path returns an n*m matrix which can be plotted to see the path in
%neuronal space.

[n,m] = size(I);

T = sqrt(n*m) * 10;

sigma = zeros(n, m);
sigma_next = zeros(n, m);

i_dest = x_d;
j_dest = y_d;

I(i_dest,j_dest)=1;
I(:,1) = −1;
I(:,m) = −1;
I(1,:) = −1;
I(n,:) = −1;
I = I*1000;

i_start = x0;
j_start = y0;

% Iterate neural network
for t = 1:T−1

% For every neuron
for i=2:n−1

for j=2:m−1

% Update neuron
x = I(i,j);
for index=[−1 0; 1 0; 0 −1; 0 1]'

x = x + sigma(i+index(1),j+index(2));
end
sigma_next(i,j) = sigmoid(x);

end
end

sigma = sigma_next;
end

finished = 0;
t = 1;
i = i_start;
j = j_start;

path = I / 1000 + 1;
path(i,j) = .75;

trajectory(1,1:2) = [i, j];

% Find optimal path along gradient ascent
while finished == 0

move = [0,0];

72

C.2 Matlab Code

v = −1;
for index=[−1 0; 1 0; 0 −1; 0 1]'

if sigma(i+index(1),j+index(2)) >= v
v = sigma(i+index(1),j+index(2));
move = index';

end
end

i = i + move(1);
j = j + move(2);
t = t + 1;
trajectory(t,:) = [i, j];
path(i,j) = .5;

if ((move(1) == 0 && move(2) == 0) || i == 1 || i==n || j==1 || j==m) || ...
size(trajectory,1)>1200
finished = 1;
display('Error: Does not converge');

end

if i==i_dest && j == j_dest
finished = 1;
display('Hooray!');

end

end

sigma(:,:,2) = path(:,:);

function y = sigmoid(x)
beta = 0.1;
y = clamp(beta*x,0,1);

end
function y = clamp(x,a,b)

y = min(max(x,a),b);
end
end

73

Bibliography

Peter I. Corke. Robotics, Vision & Control: Fundamental Algorithms in Matlab. Springer,
2011. ISBN 978-3-642-20143-1. URL http://www.petercorke.com/Robotics_
Toolbox.html.

A. De Luca, A. Albu-Schaffer, S. Haddadin, and G. Hirzinger. Collision detection and safe
reaction with the dlr-iii lightweight manipulator arm. In Intelligent Robots and Systems,
2006 IEEE/RSJ International Conference on, pages 1623–1630. IEEE, 2006.

O. Egeland and J.T. Gravdahl. Modeling and simulation for automatic control, volume 76.
Marine Cybernetics, 2002.

Roy Featherstone and David E. Orin. Dynamics. In Bruno Siciliano and Oussama Khatib,
editors, Springer Handbook of Robotics, pages 35–65. Springer Berlin Heidelberg, 2008.
ISBN 978-3-540-30301-5. URL http://dx.doi.org/10.1007/978-3-540-30301-5_3.

R. Glasius, A. Komoda, and S.C.A.M. Gielen. Neural network dynamics for path planning
and obstacle avoidance. Neural Networks, 8(1):125–133, 1995.

PJ Hacksel and SE Salcudean. Estimation of environment forces and rigid-body velocities
using observers. In Robotics and Automation, 1994. Proceedings., 1994 IEEE Interna-
tional Conference on, pages 931–936. IEEE, 1994.

S. Haddadin, A. Albu-Schaffer, A. De Luca, and G. Hirzinger. Collision detection and
reaction: A contribution to safe physical human-robot interaction. In Intelligent Robots
and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages 3356
–3363, sept. 2008. doi: 10.1109/IROS.2008.4650764.

Simon Haykin. Neural Networks: A Comprehensive Foundation (2nd Edition). Prentice
Hall, 2 edition, July 1998. ISBN 0132733501.

Herman Høifødt. Dynamic modeling and simulation of robot manipulators : The newton-
euler formulation, 2011.

John M. Hollerbach. A recursive lagrangian formulation of maniputator dynamics and a
comparative study of dynamics formulation complexity. Systems, Man and Cybernetics,
IEEE Transactions on, 10(11):730 –736, nov. 1980. ISSN 0018-9472. doi: 10.1109/
TSMC.1980.4308393.

R. Holmberg and O. Khatib. Development and control of a holonomic mobile robot for
mobile manipulation tasks. The International Journal of Robotics Research, 19(11):
1066–1074, 2000.

75

http://www.petercorke.com/Robotics_Toolbox.html
http://www.petercorke.com/Robotics_Toolbox.html
http://dx.doi.org/10.1007/978-3-540-30301-5_3

Bibliography

Dushyant Palejiya and Herbert G. Tanner. Hybrid velocity/force control for robot
navigation in compliant unknown environments. Robotica, 24:745–758, 2006. ISSN
1469-8668. doi: 10.1017/S026357470600292X. URL http://dx.doi.org/10.1017/
S026357470600292X.

William M. Silver. On the equivalence of lagrangian and newton-euler dynamics for manip-
ulators. The International Journal of Robotics Research, 1(2):60–70, 1982. doi: 10.1177/
027836498200100204. URL http://ijr.sagepub.com/content/1/2/60.abstract.

M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot modeling and control. John Wiley
& Sons, Hoboken, NJ, 2006.

A. Stolt, M. Linderoth, A. Robertsson, and R. Johansson. Force controlled robotic assem-
bly without a force sensor. In Robotics and Automation (ICRA), 2012 IEEE Interna-
tional Conference on, pages 1538–1543. IEEE, 2012.

K. Suita, Y. Yamada, N. Tsuchida, K. Imai, H. Ikeda, and N. Sugimoto. A failure-
to-safety ”kyozon” system with simple contact detection and stop capabilities for safe
human-autonomous robot coexistence. In Robotics and Automation, 1995. Proceedings.,
1995 IEEE International Conference on, volume 3, pages 3089 –3096 vol.3, may 1995.
doi: 10.1109/ROBOT.1995.525724.

S. Takakura, T. Murakami, and K. Ohnishi. An approach to collision detection and
recovery motion in industrial robot. In Industrial Electronics Society, 1989. IECON’89.,
15th Annual Conference of IEEE, pages 421–426. IEEE, 1989.

Manual - UR5 with CB2. Universal Robots. Version 1.6.

76

http://dx.doi.org/10.1017/S026357470600292X
http://dx.doi.org/10.1017/S026357470600292X
http://ijr.sagepub.com/content/1/2/60.abstract

	Abstract
	Preface
	Contents
	Nomenclature
	1 Introduction
	1.1 Related Work
	1.2 Notation and Terminology

	2 Neural Networks
	2.1 Neural Networks and Learning
	2.2 Hopfield Neural Network Model

	3 Dynamics of the UR5 Manipulator
	3.1 Background Theory
	3.1.1 Euler-Lagrange Method
	3.1.2 Newton-Euler Method
	3.1.3 Comparison of Euler-Lagrange and Newton-Euler Method

	3.2 UR5 Manipulator Dynamics
	3.2.1 Denavit–Hartenberg Parameters
	3.2.2 Newton-Euler Method Parameters
	3.2.3 Equations of Motion using Automated Framework

	3.3 Simulation of UR5 Model Dynamics
	3.3.1 Set-up and Controller
	3.3.2 Results
	3.3.3 Observations

	4 Inverse Dynamics Controller
	5 Collision Detection
	5.1 Dynamics and Collision Forces
	5.2 Force Estimate from Joint Angle Error
	5.3 Collision Detection from Force Estimate

	6 Collision Avoidance and Trajectory Generation
	6.1 Hopfield Neural Network Path Planner
	6.1.1 Dynamics
	6.1.2 Shortest Feasible Path
	6.1.3 Comparison to other Neural Networks

	6.2 Path Planner Examples
	6.2.1 Set-up
	6.2.2 Results and Observations

	6.3 Trajectory between Waypoints
	6.3.1 Waypoints to Workspace
	6.3.2 Waypoints to Configuration Space
	6.3.3 Connecting Waypoints using Smooth Splines

	7 Simulation Experiment
	7.1 Set-up
	7.2 Results
	7.3 Discussion

	8 Conclusion
	8.1 Recommendations for Future Work

	A Definitions and Properties
	A.1 Geometric Jacobian
	A.2 Transformation and Rotation Matrices
	A.3 Skew Symmetry

	B UR5 Manipulator Dynamics
	B.1 Framework (Maple file)
	B.2 Dynamics (Matlab file)

	C Simulation Experiment Implementation
	C.1 Simulink Diagrams
	C.2 Matlab Code
	C.2.1 UR5 Forward Dynamics (S-function)
	C.2.2 Trajectory Generator
	C.2.3 Hopfield Neural Network Path Planner

	Bibliography

